搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时间反演技术的电磁器件端口场与内部场转换方法

陈传升 王秉中 王任

引用本文:
Citation:

基于时间反演技术的电磁器件端口场与内部场转换方法

陈传升, 王秉中, 王任

Conversion method between port field and internal field of electromagnetic device based on time-reversal technique

Chen Chuan-Sheng, Wang Bing-Zhong, Wang Ren
PDF
HTML
导出引用
  • 随着电磁器件的集成化, 器件搭载的模块、实现的功能愈发多样. 各模块间的耦合难以忽略, 设计难度陡然增加, 传统设计方法逐渐力不从心, 迫切需要寻找一种新的电磁综合设计方法. 本文利用时间反演电磁波的时空同步聚焦特性, 探索了将时间反演技术应用于器件设计的可能性. 首先, 基于通用的器件逆设计流程, 利用时间反演技术、并矢格林函数及电磁学的基本原理, 提出了将器件端口场分布转换为内部场分布的方法, 并证明由端口期望场的时间反演场在空间某一位置获得的连续等效源的共轭分布可在端口处产生与期望场接近的场分布. 且在单点频逆设计过程中, 只需知道端口电场或磁场的切向分量即可完成端口场与内部场的转换. 同时, 借助格林函数的互易性对本文所提理论做适当变换后, 进行数值仿真验证, 分析讨论了不同初始信息条件下该方法的适用性. 仿真结果与理论相符, 证明了理论的正确性, 为将时间反演技术应用于电磁器件的逆设计提供了可能.
    With the integration of electromagnetic devices, the modules that make up into the devices and the functions that the devices needed to achieve are becoming more and more diverse. The coupling between the modules is difficult to ignore, the difficulty in designing increases sharply, and the traditional design methods gradually become incompetent. It is urgent to find a new comprehensive electromagnetic design method. This paper is to use the spatiotemporally synchronous focusing characteristics of time-reversed electromagnetic waves to explore the possibility of applying time-reversal technique to device design. First, based on the general device inverse design process, using the time-reversal technique, dyadic Green's function and basic principle of electromagnetics, a method of converting the port field distribution into the internal field distribution of the device is proposed. It is also proved that the continuous equivalent source obtained by the time-reversed field at a certain position in space can produce a field distribution close to the desired field at the port. In the single frequency inverse design process, only the tangential component of the electric field or magnetic field of the port is needed to be known. Then, with the help of the reciprocity of Green's function, the above theory is transformed to facilitate the numerical simulation. This numerical simulation realizes the reconstruction of the amplitude distribution source and the phase distribution source. It should be noted that the amplitude distribution source and phase distribution source are both randomly constructed. The numerical simulation verification is completed in two different cases and a variety of different initial conditions. All the simulation results are consistent with the theoretical results, which proves that it is feasible to apply time-reversal technique to the inverse design of electromagnetic devices.
      通信作者: 王秉中, bzwang@uestc.edu.cn ; 王任, rwang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61901086)、博士后创新人才支持计划(批准号: BX20180057)、中国博士后科学基金(批准号: 2018M640907)和中央高校基本科研业务费(批准号: ZYGX2019J101, ZYGX2019Z016)资助的课题
      Corresponding author: Wang Bing-Zhong, bzwang@uestc.edu.cn ; Wang Ren, rwang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61901086), the Postdoctoral Innovation Talents Support Program, China (Grant No. BX20180057), the China Postdoctoral Science Foundation (Grant No. 2018M640907), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. ZYGX2019J101, ZYGX2019Z016)
    [1]

    Molesky S, Lin Z, Piggott A Y, Jin W, Vucković J, Rodriguez A W 2018 Nat. Photonics 12 659Google Scholar

    [2]

    Zhu Y, Ju Y, Zhang C 2019 P. I. Mech. Eng. A-J. Pow. 233 431

    [3]

    Brown T, Narendra C, Vahabzadeh Y, Caloz C, Mojabi P 2020 IEEE Trans. Antennas Propag. 68 1812Google Scholar

    [4]

    Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vučković J 2015 Nat. Photonics 9 374Google Scholar

    [5]

    Wang M Y, Wang X, Guo D 2003 Comput. Methods Appl. Mech. Eng. 192 227Google Scholar

    [6]

    Lee H, Itoh T 1997 IEEE Trans. Microw. Theory Tech. 45 803Google Scholar

    [7]

    Su L, Piggott A Y, Sapra N V, Petykiewicz J A, Vuckovic J 2018 ACS Photonics 5 301Google Scholar

    [8]

    Su L, Vercruysse D, Skarda J, Sapra N V, Petykiewicz J A, Vučković J 2020 Appl. Phys. Rev. 7 011407Google Scholar

    [9]

    Callewaert F, Aydin K 2016 Novel Optical Systems Design and Optimization XIX. (San Diego: International Society for Optics and Photonics) p9948

    [10]

    Wang J, Yang X S, Wang B Z 2017 IET Microw. Antennas P. 12 385

    [11]

    Wang J, Yang X S, Ding X, Wang B Z 2018 IEEE Trans. Antennas Propag. 66 2254Google Scholar

    [12]

    Wang L, Wang G, Sidén J 2015 IEEE Trans. Microw. Theory Tech. 63 3962Google Scholar

    [13]

    Pehlivanoglu Y V 2014 Appl. Soft Comput. 24 781Google Scholar

    [14]

    Chen C T, Gu G X 2020 Adv. Sci. 7 1902607Google Scholar

    [15]

    Salucci M, Gelmini A, Oliveri G, Anselmi N, Massa A 2018 IEEE Trans. Antennas Propag. 66 5805Google Scholar

    [16]

    Wigner E P 1959 Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (New York: Academic Press)

    [17]

    王秉中, 王任 2019 时间反演电磁学 (北京: 科学出版社)

    Wang B Z, Wang R 2019 Time-Reversed Electromagnetics (Beijing: Science Press) (in Chinese)

    [18]

    Oestges C, Kim A D, Papanicolaou G, Paulraj A J 2005 IEEE Trans. Antennas Propag. 53 283Google Scholar

    [19]

    Qiu R C 2006 IEEE Trans. Wirel. Commun. 5 2685Google Scholar

    [20]

    Gong Z S, Wang B Z, Yang Y, Zhou H C, Ding S, Wang X H 2017 IEEE Photonics J. 9 6900108

    [21]

    Davy M, de R J, Joly J C, Fink M 2010 Phys. Rev. C 11 37

    [22]

    Bacot V, Labousse M, Eddi A, Fink M, Fort E 2016 Nat. Phys. 12 972Google Scholar

    [23]

    Vahabzadeh Y, Achouri K, Caloz C 2016 IEEE Trans. Antennas Propag. 64 4753Google Scholar

    [24]

    龚志双, 王秉中, 王任 2018 物理学报 67 084101Google Scholar

    Gong Z S Wang B Z, Wang R 2018 Acta Phys. Sin. 67 084101Google Scholar

    [25]

    Harrington R F 2001 Time-Harmonic Electromagnetic Fields (New York: Wiley-IEEE Press) pp106−110

  • 图 1  空间拓扑关系

    Fig. 1.  Topological relation of space.

    图 2  用于数值验证的问题转化示意图 (a)数理模型对应的数值验证模型; (b)利用互易原理转换后的数值验证模型

    Fig. 2.  A problem transformation diagram for numerical validation: (a) Numerical verification model corresponding to mathematical model; (b) numerical verification model converted by reciprocity principle.

    图 3  数值仿真实验示意图 (a)自由空间验证示意图; (b)四周为理想电导体边界的验证示意图

    Fig. 3.  Schematic diagram of numerical simulation experiment: (a) Schematic diagram of free space verification; (b) schematic diagram of verification of PEC boundaries around.

    图 4  重建源代价函数计算结果

    Fig. 4.  The calculation results of the cost function of the rebuild source.

    图 5  初始源幅相分布图 (a) $ {Ex} $相位分布为特定函数; (b) $ {Ex} $幅度分布为特定函数

    Fig. 5.  The amplitude-phase distribution of the original source: (a) The phase distribution is a special function; (b) the amplitude distribution is a special function.

    图 6  自由空间条件下重建源的幅相分布 (a)序号为5的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $的幅相分布; (b) 序号为8的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $的幅相分布; (c)序号为2的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $的幅相分布; (d)序号为8的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $的幅相分布

    Fig. 6.  The amplitude-phase distribution of the reconstructed source in free space: (a) The amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex{\rm{Phase}}}}^{a}\left(x, y\right) $ with experimental number 5; (b) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex{\rm{Phase}}}}^{a}\left(x, y\right) $ with experimental number 8; (c) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $ with experimental number 2; (d) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $ with experimental number 8.

    图 7  四周为理想电导体条件下重建源的幅相分布 (a)序号为4的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $的幅相分布; (b) 序号为7的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $的幅相分布; (c)序号为3的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $的幅相分布; (d)序号为9的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $的幅相分布

    Fig. 7.  The amplitude-phase distribution of the reconstructed source in PEC space: (a) The amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $ with experimental number 4; (b) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $ with experimental number 7; (c) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $ with experimental number 3; (d) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $ with experimental number 9.

    表 1  数值仿真结果表

    Table 1.  Table of numerical simulation results.

    序号使用的反演源Field域FPCFFACFPPCFPACF
    1${ { {\cal{F} } }_{{field} }^{ \xi \text{, up} } }^{*}$${field}=\{ {Ex}, {Ey}, {Ez}, {Hx}, {Hy}, {Hz}\}$0.00770.06470.01890.0712
    2${field}=\{ {Ex}, {Ey}, {Ez}\}$0.00860.07840.00850.0735
    3${field}=\{ {Ex}, {Ey}\}$0.00820.07500.00850.0735
    4${ { {\cal{F} } }_{{field} }^{ \xi \text{, down} } }^{*}$${field}=\{ {Ex, }{Ey}, {Ez}, {Hx}, {Hy}, {Hz}\}$0.00810.06240.01910.0735
    5${field}=\{ {Ex}, {Ey}, Ez\}$0.00920.07030.00980.0707
    6${field}=\{ {Ex}, {Ey}\}$0.00880.06680.00980.0707
    7${ { {\cal{F} } }_{{field} }^{ \xi \text{, up} } }^{*}$, ${ { {\cal{F} } }_{{field} }^{ \xi \text{, down} } }^{*}$${field}=\{ {Ex}, {Ey}, {Ez}, {Hx}, {Hy}, {Hz}\}$0.00780.06350.01890.0713
    8${field}=\{ {Ex}, {Ey}, {Ez}\}$0.00870.07470.00900.0718
    9${field}=\{ {Ex}, {Ey}\}$0.00830.07120.00900.0718
    下载: 导出CSV
  • [1]

    Molesky S, Lin Z, Piggott A Y, Jin W, Vucković J, Rodriguez A W 2018 Nat. Photonics 12 659Google Scholar

    [2]

    Zhu Y, Ju Y, Zhang C 2019 P. I. Mech. Eng. A-J. Pow. 233 431

    [3]

    Brown T, Narendra C, Vahabzadeh Y, Caloz C, Mojabi P 2020 IEEE Trans. Antennas Propag. 68 1812Google Scholar

    [4]

    Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vučković J 2015 Nat. Photonics 9 374Google Scholar

    [5]

    Wang M Y, Wang X, Guo D 2003 Comput. Methods Appl. Mech. Eng. 192 227Google Scholar

    [6]

    Lee H, Itoh T 1997 IEEE Trans. Microw. Theory Tech. 45 803Google Scholar

    [7]

    Su L, Piggott A Y, Sapra N V, Petykiewicz J A, Vuckovic J 2018 ACS Photonics 5 301Google Scholar

    [8]

    Su L, Vercruysse D, Skarda J, Sapra N V, Petykiewicz J A, Vučković J 2020 Appl. Phys. Rev. 7 011407Google Scholar

    [9]

    Callewaert F, Aydin K 2016 Novel Optical Systems Design and Optimization XIX. (San Diego: International Society for Optics and Photonics) p9948

    [10]

    Wang J, Yang X S, Wang B Z 2017 IET Microw. Antennas P. 12 385

    [11]

    Wang J, Yang X S, Ding X, Wang B Z 2018 IEEE Trans. Antennas Propag. 66 2254Google Scholar

    [12]

    Wang L, Wang G, Sidén J 2015 IEEE Trans. Microw. Theory Tech. 63 3962Google Scholar

    [13]

    Pehlivanoglu Y V 2014 Appl. Soft Comput. 24 781Google Scholar

    [14]

    Chen C T, Gu G X 2020 Adv. Sci. 7 1902607Google Scholar

    [15]

    Salucci M, Gelmini A, Oliveri G, Anselmi N, Massa A 2018 IEEE Trans. Antennas Propag. 66 5805Google Scholar

    [16]

    Wigner E P 1959 Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (New York: Academic Press)

    [17]

    王秉中, 王任 2019 时间反演电磁学 (北京: 科学出版社)

    Wang B Z, Wang R 2019 Time-Reversed Electromagnetics (Beijing: Science Press) (in Chinese)

    [18]

    Oestges C, Kim A D, Papanicolaou G, Paulraj A J 2005 IEEE Trans. Antennas Propag. 53 283Google Scholar

    [19]

    Qiu R C 2006 IEEE Trans. Wirel. Commun. 5 2685Google Scholar

    [20]

    Gong Z S, Wang B Z, Yang Y, Zhou H C, Ding S, Wang X H 2017 IEEE Photonics J. 9 6900108

    [21]

    Davy M, de R J, Joly J C, Fink M 2010 Phys. Rev. C 11 37

    [22]

    Bacot V, Labousse M, Eddi A, Fink M, Fort E 2016 Nat. Phys. 12 972Google Scholar

    [23]

    Vahabzadeh Y, Achouri K, Caloz C 2016 IEEE Trans. Antennas Propag. 64 4753Google Scholar

    [24]

    龚志双, 王秉中, 王任 2018 物理学报 67 084101Google Scholar

    Gong Z S Wang B Z, Wang R 2018 Acta Phys. Sin. 67 084101Google Scholar

    [25]

    Harrington R F 2001 Time-Harmonic Electromagnetic Fields (New York: Wiley-IEEE Press) pp106−110

  • [1] 闫轶著, 丁帅, 韩旭, 王秉中. 基于信道处理的时间反演幅度可调控多目标聚焦方法. 物理学报, 2023, 72(16): 164101. doi: 10.7498/aps.72.20230547
    [2] 安腾远, 丁霄. 基于角谱域和时间反演的任意均匀场的生成方法. 物理学报, 2023, 72(18): 180201. doi: 10.7498/aps.72.20230418
    [3] 安腾远, 丁霄, 王秉中. 基于时间反演技术的复杂天线罩辐射波束畸变纠正. 物理学报, 2023, 72(3): 030401. doi: 10.7498/aps.72.20221767
    [4] 刘金品, 王秉中, 陈传升, 王任. 基于深度物理启发神经网络的微波波导器件逆设计方法. 物理学报, 2023, 72(8): 080201. doi: 10.7498/aps.72.20230031
    [5] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测. 物理学报, 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [6] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [7] 朱江, 王雁, 杨甜. 无线多径信道中基于时间反演的物理层安全传输机制. 物理学报, 2018, 67(5): 050201. doi: 10.7498/aps.67.20172134
    [8] 龚志双, 王秉中, 王任, 臧锐, 王晓华. 基于光栅结构的远场时间反演亚波长源成像. 物理学报, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [9] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成. 物理学报, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [10] 冯菊, 廖成, 张青洪, 盛楠, 周海京. 蒸发波导中的时间反演抛物方程定位法. 物理学报, 2014, 63(13): 134101. doi: 10.7498/aps.63.134101
    [11] 周洪澄, 王秉中, 丁帅, 欧海燕. 时间反演电磁波在金属丝阵列媒质中的超分辨率聚焦. 物理学报, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [12] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [13] 赵德双, 岳文君, 余敏, 张升学. 时间反演脉冲电磁波在双负材料中传播特性研究. 物理学报, 2012, 61(7): 074102. doi: 10.7498/aps.61.074102
    [14] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理. 物理学报, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [15] 章志敏, 王秉中, 葛广顶, 梁木生, 丁帅. 亚波长金属线阵中一维时间反演电磁波的聚焦机理研究. 物理学报, 2012, 61(9): 098401. doi: 10.7498/aps.61.098401
    [16] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演. 物理学报, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [17] 章志敏, 王秉中, 葛广顶. 一种用于时间反演通信的亚波长天线阵列设计. 物理学报, 2012, 61(5): 058402. doi: 10.7498/aps.61.058402
    [18] 张迷, 陈元平, 张再兰, 欧阳滔, 钟建新. 堆叠石墨片对锯齿型石墨纳米带电子输运的影响. 物理学报, 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [19] 戴振宏, 倪 军. 基于格林函数的多终端量子链状体系电子输运性质的研究. 物理学报, 2005, 54(7): 3342-3345. doi: 10.7498/aps.54.3342
    [20] 郭汝海, 时红艳, 孙秀冬. 用格林函数法计算量子点中的应变分布. 物理学报, 2004, 53(10): 3487-3492. doi: 10.7498/aps.53.3487
计量
  • 文章访问数:  5573
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2020-11-11
  • 上网日期:  2021-03-30
  • 刊出日期:  2021-04-05

/

返回文章
返回