搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超疏水表面液滴的振动特性及其与液滴体积的关系

王凯宇 庞祥龙 李晓光

引用本文:
Citation:

超疏水表面液滴的振动特性及其与液滴体积的关系

王凯宇, 庞祥龙, 李晓光

Oscillation properties of water droplets on a superhydrophobic surface and their correlations with droplet volume

Wang Kai-Yu, Pang Xiang-Long, Li Xiao-Guang
PDF
HTML
导出引用
  • 超疏水表面液滴的振动特性与接触线的移动、液滴体积、基底振幅等因素密切相关. 本文在基底振幅较小且恒定的条件下, 研究了超疏水表面液滴的共振振幅、模式区间、共振频率等振动特性及其与液滴体积(20—500 μL)的关系. 此外, 将基于一般性疏水表面建立的Noblin共振频率计算模型应用于超疏水表面, 并提出“虚驻点”的概念, 借此对模型进行了误差分析和修正. 研究表明: 1)共振时, 液滴高度变化率即比振幅随体积增大而增大, 随阶数增大而减小; 2)各模式区间的起止频率首尾相接, 其范围随体积增大而减小; 3)液滴体积越大, 共振频率越小, 随着阶数增大, 共振频率f与体积V的关系趋于f -V–0.4, 不同于一般性疏水表面上的f -V–0.5; 4)直接应用Noblin模型计算共振频率会产生较大误差, 主要原因在于液滴表面波波段数量统计存在较大偏差, 而修正后的模型可以准确计算超疏水表面大体积液滴的共振频率.
    In-depth understanding is limited to the oscillation properties of a droplet on a superhydrophobic surface, which are closely related to the contact line movement, droplet volume, and substrate amplitude, to name only a few factors. In the present work, we investigate the characteristics of droplet resonance amplitude, mode range, and resonance frequency, as well as their correlations with droplet volume (from 20 to 500 μL). In particular, the theoretical resonance frequency is mainly concerned and addressed. To this end, a model based on general hydrophobic surfaces proposed by Noblin et al. is employed, with its applicability to superhydrophobic surfaces examined. We propose a concept “virtual stationary point” for analyzing the errors from this model, with which we modify the model through using the correction coefficients. The main results are concluded as follows. 1) Under resonance, the change rate in droplet height rises with the increase of droplet volume and reduces with the increase of oscillation mode number. 2) Each number of oscillation mode corresponds to a frequency range, and the ends of adjacent mode ranges are connected to each other. These frequency ranges decrease with the increase of droplet volume. 3) Resonance frequency, f, decreases with the increase of droplet volume, V, and they are related approximated by f -V–0.4 under high mode numbers, which is different from f -V–0.5 as found on general hydrophobic surfaces. 4) Direct application of Noblin model to a superhydrophobic surface results in nonnegligible errors, because geometric characteristics in this case are different from those on a general hydrophobic surface, which leads to inaccuracy in counting the number of surface wave segments. In contrast, results from modified Noblin model accord well with experimental results.
      通信作者: 李晓光, lixiaoguang@nwpu.edu.cn
    • 基金项目: 国家自然科学基金面上项目(批准号: 11974280, 51672224)
      Corresponding author: Li Xiao-Guang, lixiaoguang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974280, 51672224)
    [1]

    Vukasinovic B, Smith M K, Glezer A 2004 Phys. Fluids 16 306Google Scholar

    [2]

    Nisisako T, Torii T 2007 Adv. Mater. 19 1489Google Scholar

    [3]

    Rodot H 1979 Acta Astronaut. 6 1083Google Scholar

    [4]

    Strani M, Sabetta F 1984 J. Fluid Mech. 141 233Google Scholar

    [5]

    Noblin X, Buguin A, Brochard-Wyart F 2009 Eur. Phys. J.Spec. Top. 166 7Google Scholar

    [6]

    Fujii H, Matsumoto T, Izutani S, Kiguchi S, Nogi K 2006 Acta Mater. 54 1221Google Scholar

    [7]

    Iwata S, Yamauchi S, Yoshitake Y, Nagumo R, Mori H, Kajiya T 2016 Rev. Sci. Instrum. 87 045106Google Scholar

    [8]

    Matsumoto T, Nakano T, Fujii H, Kamai M, Nogi K 2002 Phys. Rev. E 65 031201Google Scholar

    [9]

    Jonas A, Karadag Y, Tasaltin N, Kucukkara I, Kiraz A 2011 Langmuir 27 2150Google Scholar

    [10]

    Mugele F, Baret J C, Steinhauser D 2006 Appl. Phys. Lett. 88 204106Google Scholar

    [11]

    Oh J M, Legendre D, Mugele F 2012 Europhys. Lett. 98 34003Google Scholar

    [12]

    Mugele F 2011 Lab Chip 11 2011Google Scholar

    [13]

    Mampallil D, van den Ende D, Mugele F 2011 Appl. Phys. Lett. 99 154102Google Scholar

    [14]

    Beckingham L J, Todorovic M, Velasquez J T, Vial M L, Chen M, Ekberg J A K, St John J A 2019 J. Biol. Eng. 13 41Google Scholar

    [15]

    Rayleigh L 1879 Proc. R. Soc, London 29 71Google Scholar

    [16]

    Milne A J, Defez B, Cabrerizo-Vilchez M, Amirfazli A 2014 Adv. Colloid Interface Sci. 203 22Google Scholar

    [17]

    Vukasinovic B, Smith M K, Glezer A 2007 J. Fluid Mech. 587 395Google Scholar

    [18]

    Kim H, Yang J, Chung J 2014 Jpn. J. Appl. Phys. 53 05HC03Google Scholar

    [19]

    Chang C T, Bostwick J B, Steen P H, Daniel S 2013 Phys. Rev. E 88 023015Google Scholar

    [20]

    McGuiggan P M, Grave D A, Wallace J S, Cheng S, Prosperetti A, Robbins M O 2011 Langmuir 27 11966Google Scholar

    [21]

    Oh J M, Ko S H, Kang K H 2008 Langmuir 24 8379Google Scholar

    [22]

    Costalonga M, Brunet P 2020 Phys. Rev. Fluid 5 023601Google Scholar

    [23]

    王再冉 2018 硕士学位论文 (北京: 北京化工大学)

    Wang Z R 2018 M. S. Dissertation (Beijing: Beijing University of Chemical Technology) (in Chinese)

    [24]

    Rahimzadeh A, Khan T, Eslamian M 2019 Eur. Phys. J. E 42 125Google Scholar

    [25]

    SmithwickIII R W, Boulet J A M 1989 J. Colloid Interface Sci. 130 588Google Scholar

    [26]

    Noblin X, Buguin A, Brochard-Wyart F 2004 Eur. Phys. J. E 14 395Google Scholar

    [27]

    Lyubimov D V, Lyubimova T P, Shklyaev S V 2006 Phys. Fluids. 18 012101Google Scholar

    [28]

    Ilyukhina M A, Makov Y N 2009 Acoust. Phys. 55 722Google Scholar

    [29]

    Brunet P 2011 Eur. Phys. J-Spec. Top. 192 207Google Scholar

    [30]

    田野, 张屹然, 王宏, 朱恂, 陈蓉, 丁玉栋, 廖强 2019 工程热物理学报 40 829

    Tian Y, Zhang Y R, Wang H, Zhu X, Chen R, Ding Y D, Liao Q 2019 J. Eng. Thermophys. 40 829

    [31]

    周建臣, 耿兴国, 林可君, 张永建, 臧渡洋 2014 物理学报 63 216801Google Scholar

    Zhou J C, Geng X G, Lin K J, Zhang Y J, Zang D Y 2014 Acta Phys. Sin. 63 216801Google Scholar

    [32]

    Mettu S, Chaudhury M K 2012 Langmuir 28 14100Google Scholar

    [33]

    陈文 2015 硕士学位论文 (重庆: 重庆大学)

    Chen W 2015 M. S. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [34]

    Sanyal A, Basu S 2017 Chem. Eng. Sci. 163 179Google Scholar

    [35]

    Li X, Wang Y, Wang R, Wang S, Zang D, Geng X 2018 Adv. Mater. Interfaces 5 1800356Google Scholar

    [36]

    Ramos S M M 2008 Nucl. Instrum. meth. B 266 3143Google Scholar

    [37]

    Landau L, Lifshitz M 1987 Fluid Mechanics 2 (Oxford: Pergamon) pp247−250

    [38]

    Li X, Wang R, Shi H, Song B 2018 Appl. Phys. Lett. 113 101602Google Scholar

    [39]

    Wang R, Li X 2020 Powder Technol. 367 608Google Scholar

    [40]

    Li X, Wang R, Huang S, Wang Y, Shi H 2018 Soft Matter 14 9877Google Scholar

    [41]

    Li X 2019 Adv. Colloid Interface Sci. 271 101988Google Scholar

  • 图 1  实验装置示意图, 图中玻片凹面处的曲率大小与实际情况相同.

    Fig. 1.  Sketch of experiment set, with the curvature of the concave area equal to that of the real substrate.

    图 2  500 μL液滴在不同频率下的振动瞬态图像叠加(接触线位移非常小, 近似认为三相线处为驻点) (a) 30 Hz; (b) 50 Hz; (c) 70 Hz; (d) 100 Hz

    Fig. 2.  Snapshot-superimposed images of an oscillated droplet (500 μL) under different frequencies: (a) 30 Hz; (b) 50 Hz; (c) 70 Hz; (d) 100 Hz.

    图 3  接触线固着(左)和移动(右)模式下驻点数分别为6和4的液滴振动示意图

    Fig. 3.  Schematics of droplet oscillations under pinned (left) and moving (right) contact lines, with the quantity of stationary points being 6 and 4, respectively.

    图 4  不同体积液滴的幅频关系 (a) 20 μL, (b) 70 μL, (c) 200 μL, (d) 500 μL; 模式区间(e), 共振比振幅(f)与液滴体积的关系

    Fig. 4.  Droplet amplitudes versus oscillation frequencies for different droplet volumes: (a) 20 μL; (b) 70 μL; (c) 200 μL; (d) 500 μL; mode ranges (e) and resonance amplitudes (f) versus droplet volumes.

    图 5  Noblin模型示意图 (a)接触线固着型; (b)接触线移动型, 其中蓝色区域表示静止液滴, 实线、虚线分别为液滴处于最大和最小高度时的轮廓

    Fig. 5.  Illustrations of two types of Noblin models: (a) Fixed contact line; (b) mobile contact line, where the blue areas represent the static droplets, the solid and dashed curves represent droplet profiles at the maximum and minimum heights, respectively.

    图 6  普通坐标系(a)和双对数坐标系(b)中液滴3—6阶振动的共振频率与体积的关系曲线

    Fig. 6.  Theoretical and experimental resonance frequencies versus droplet volumes under oscillation mode numbers ranging from 3 to 6: (a) General coordinate system; (b) logarithmic coordinate system.

    图 7  超疏水表面液滴表面波的结构示意图

    Fig. 7.  Schematic of the surface wave structure of a droplet on a superhydrophobic surface.

    图 8  利用Noblin接触线固着模型(a)和移动模型(b)求得的共振频率的相对误差与体积的关系

    Fig. 8.  Relative errors of resonance frequencies, obtained from the two types of Noblin models, versus droplet volumes: (a) Fixed-contact-line model; (b) mobile-contact-line model.

    图 9  包含修正系数$ \alpha$$\beta $的表面波结构示意图

    Fig. 9.  Schematic of the surface wave structure with correction coefficients ($ \alpha\;{\rm{and}}\;\beta $) involved.

    图 10  (a)修正系数$ \alpha $的拟合曲线; (b)修正前后Noblin模型的相对误差

    Fig. 10.  (a) Fitted curves of the correction coefficient $ \alpha $; (b) Relative errors of resonance frequencies from pristine and modified Noblin models.

    表 1  不同体积及阶数对应的修正系数$ \alpha $

    Table 1.  Values of correction coefficient $ \alpha $ under different droplet volumes and oscillation mode numbers.

    液滴体积/μL振动阶数
    3456
    200.735730.684880.697710.71784
    700.478750.551280.497560.32655
    2000.460780.228000.332080.09438
    5000.320440.168310.332580.13569
    下载: 导出CSV
  • [1]

    Vukasinovic B, Smith M K, Glezer A 2004 Phys. Fluids 16 306Google Scholar

    [2]

    Nisisako T, Torii T 2007 Adv. Mater. 19 1489Google Scholar

    [3]

    Rodot H 1979 Acta Astronaut. 6 1083Google Scholar

    [4]

    Strani M, Sabetta F 1984 J. Fluid Mech. 141 233Google Scholar

    [5]

    Noblin X, Buguin A, Brochard-Wyart F 2009 Eur. Phys. J.Spec. Top. 166 7Google Scholar

    [6]

    Fujii H, Matsumoto T, Izutani S, Kiguchi S, Nogi K 2006 Acta Mater. 54 1221Google Scholar

    [7]

    Iwata S, Yamauchi S, Yoshitake Y, Nagumo R, Mori H, Kajiya T 2016 Rev. Sci. Instrum. 87 045106Google Scholar

    [8]

    Matsumoto T, Nakano T, Fujii H, Kamai M, Nogi K 2002 Phys. Rev. E 65 031201Google Scholar

    [9]

    Jonas A, Karadag Y, Tasaltin N, Kucukkara I, Kiraz A 2011 Langmuir 27 2150Google Scholar

    [10]

    Mugele F, Baret J C, Steinhauser D 2006 Appl. Phys. Lett. 88 204106Google Scholar

    [11]

    Oh J M, Legendre D, Mugele F 2012 Europhys. Lett. 98 34003Google Scholar

    [12]

    Mugele F 2011 Lab Chip 11 2011Google Scholar

    [13]

    Mampallil D, van den Ende D, Mugele F 2011 Appl. Phys. Lett. 99 154102Google Scholar

    [14]

    Beckingham L J, Todorovic M, Velasquez J T, Vial M L, Chen M, Ekberg J A K, St John J A 2019 J. Biol. Eng. 13 41Google Scholar

    [15]

    Rayleigh L 1879 Proc. R. Soc, London 29 71Google Scholar

    [16]

    Milne A J, Defez B, Cabrerizo-Vilchez M, Amirfazli A 2014 Adv. Colloid Interface Sci. 203 22Google Scholar

    [17]

    Vukasinovic B, Smith M K, Glezer A 2007 J. Fluid Mech. 587 395Google Scholar

    [18]

    Kim H, Yang J, Chung J 2014 Jpn. J. Appl. Phys. 53 05HC03Google Scholar

    [19]

    Chang C T, Bostwick J B, Steen P H, Daniel S 2013 Phys. Rev. E 88 023015Google Scholar

    [20]

    McGuiggan P M, Grave D A, Wallace J S, Cheng S, Prosperetti A, Robbins M O 2011 Langmuir 27 11966Google Scholar

    [21]

    Oh J M, Ko S H, Kang K H 2008 Langmuir 24 8379Google Scholar

    [22]

    Costalonga M, Brunet P 2020 Phys. Rev. Fluid 5 023601Google Scholar

    [23]

    王再冉 2018 硕士学位论文 (北京: 北京化工大学)

    Wang Z R 2018 M. S. Dissertation (Beijing: Beijing University of Chemical Technology) (in Chinese)

    [24]

    Rahimzadeh A, Khan T, Eslamian M 2019 Eur. Phys. J. E 42 125Google Scholar

    [25]

    SmithwickIII R W, Boulet J A M 1989 J. Colloid Interface Sci. 130 588Google Scholar

    [26]

    Noblin X, Buguin A, Brochard-Wyart F 2004 Eur. Phys. J. E 14 395Google Scholar

    [27]

    Lyubimov D V, Lyubimova T P, Shklyaev S V 2006 Phys. Fluids. 18 012101Google Scholar

    [28]

    Ilyukhina M A, Makov Y N 2009 Acoust. Phys. 55 722Google Scholar

    [29]

    Brunet P 2011 Eur. Phys. J-Spec. Top. 192 207Google Scholar

    [30]

    田野, 张屹然, 王宏, 朱恂, 陈蓉, 丁玉栋, 廖强 2019 工程热物理学报 40 829

    Tian Y, Zhang Y R, Wang H, Zhu X, Chen R, Ding Y D, Liao Q 2019 J. Eng. Thermophys. 40 829

    [31]

    周建臣, 耿兴国, 林可君, 张永建, 臧渡洋 2014 物理学报 63 216801Google Scholar

    Zhou J C, Geng X G, Lin K J, Zhang Y J, Zang D Y 2014 Acta Phys. Sin. 63 216801Google Scholar

    [32]

    Mettu S, Chaudhury M K 2012 Langmuir 28 14100Google Scholar

    [33]

    陈文 2015 硕士学位论文 (重庆: 重庆大学)

    Chen W 2015 M. S. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [34]

    Sanyal A, Basu S 2017 Chem. Eng. Sci. 163 179Google Scholar

    [35]

    Li X, Wang Y, Wang R, Wang S, Zang D, Geng X 2018 Adv. Mater. Interfaces 5 1800356Google Scholar

    [36]

    Ramos S M M 2008 Nucl. Instrum. meth. B 266 3143Google Scholar

    [37]

    Landau L, Lifshitz M 1987 Fluid Mechanics 2 (Oxford: Pergamon) pp247−250

    [38]

    Li X, Wang R, Shi H, Song B 2018 Appl. Phys. Lett. 113 101602Google Scholar

    [39]

    Wang R, Li X 2020 Powder Technol. 367 608Google Scholar

    [40]

    Li X, Wang R, Huang S, Wang Y, Shi H 2018 Soft Matter 14 9877Google Scholar

    [41]

    Li X 2019 Adv. Colloid Interface Sci. 271 101988Google Scholar

  • [1] 春江, 王瑾萱, 徐晨, 温荣福, 兰忠, 马学虎. 液滴撞击超亲水表面的最大铺展直径预测模型. 物理学报, 2021, 70(10): 106801. doi: 10.7498/aps.70.20201918
    [2] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [3] 王宇航, 袁猛, 明平剑. 物性参数对液滴的聚并自弹跳的影响及其关联分析. 物理学报, 2021, 70(12): 124702. doi: 10.7498/aps.70.20201714
    [4] 陈亚博, 杨晓阔, 危波, 吴瞳, 刘嘉豪, 张明亮, 崔焕卿, 董丹娜, 蔡理. 非对称条形纳磁体的铁磁共振频率和自旋波模式. 物理学报, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [5] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [6] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [7] 李玉杰, 黄军杰, 肖旭斌. 液滴撞击圆柱内表面的数值研究. 物理学报, 2018, 67(18): 184701. doi: 10.7498/aps.67.20180364
    [8] 胡海豹, 王德政, 鲍路瑶, 文俊, 张招柱. 基于润湿阶跃的水下大尺度气膜封存方法. 物理学报, 2016, 65(13): 134701. doi: 10.7498/aps.65.134701
    [9] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [10] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变. 物理学报, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [11] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [12] 安保林, 林鸿, 刘强, 段远源. 基于圆柱定程干涉法测量气体黏度的探索. 物理学报, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [13] 杜金锦, 李文芳, 文瑞娟, 李刚, 张天才. 超高精细度微光学腔共振频率及有效腔长的精密测量. 物理学报, 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [14] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [15] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [16] 王泽锋, 胡永明, 罗洪, 孟洲, 倪明, 熊水东. 腔壁弹性对水下小型圆柱形亥姆霍兹共振器共振频率的影响. 物理学报, 2009, 58(4): 2507-2512. doi: 10.7498/aps.58.2507
    [17] 王泽锋, 胡永明, 孟 洲, 倪 明. 水下圆柱形Helmholtz共振器的声学特性分析. 物理学报, 2008, 57(11): 7022-7029. doi: 10.7498/aps.57.7022
    [18] 蔡旭红, 林旭升, 石 全, 赵年顺. 用紧束缚方法描述光子晶体缺陷耦合的共振频率移动. 物理学报, 2007, 56(5): 2742-2746. doi: 10.7498/aps.56.2742
    [19] 普小云, 柳清菊, 张中明, 林理忠. 表面单分子膜的垂悬液滴方法研究. 物理学报, 1998, 47(1): 60-67. doi: 10.7498/aps.47.60
    [20] 孙鑫. 各向异性铁磁体的共振频率. 物理学报, 1965, 21(10): 1776-1784. doi: 10.7498/aps.21.1776
计量
  • 文章访问数:  6827
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-24
  • 修回日期:  2020-11-28
  • 上网日期:  2021-03-17
  • 刊出日期:  2021-04-05

/

返回文章
返回