搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二阶梯度交叉耦合超导量子干涉仪电流传感器研制

徐达 钟青 曹文会 王雪深 王仕建 李劲劲 刘建设 陈炜

引用本文:
Citation:

二阶梯度交叉耦合超导量子干涉仪电流传感器研制

徐达, 钟青, 曹文会, 王雪深, 王仕建, 李劲劲, 刘建设, 陈炜

A second-order gradiometric superconducting quantum interference device current sensor with cross-coupled structure

Xu Da, Zhong Qing, Cao Wen-Hui, Wang Xue-Shen, Wang Shi-Jian, Li Jin-Jin, Liu Jian-She, Chen Wei
PDF
HTML
导出引用
  • 超导量子干涉仪(superconducting quantum interference device, SQUID)具有极低的噪声水平, 极高的磁场灵敏度和电流灵敏度, 可探测低噪声传感器的微弱电流信号. SQUID电流传感器已成为超导转变边缘探测器(transition-edge sensor, TES)等低噪声探测信号读出的唯一选择. 本文研制了一种针对TES信号读出应用的二阶梯度交叉耦合SQUID电流传感器. 根据TES的信号读出需求, 设计了SQUID电流传感器的结构和各项参数. 其中, SQUID环路、输入线圈和反馈线圈均采用二阶梯度结构. SQUID环路与输入线圈、反馈线圈均采用不同平面交叉耦合方式, 可有效地减弱寄生电容. 通过优化工艺, 成功地研制出基于Nb/Al-AlOx/Nb约瑟夫森结的二阶梯度交叉耦合SQUID电流传感器. 液氦温区测试结果显示, 输入线圈电流灵敏度为17 μA/Φ0, 磁通白噪声为2 μΦ0/$ \sqrt{{\rm{H}}{\rm{z}}} $, 电流白噪声为34 pA/$ \sqrt{{\rm{H}}{\rm{z}}} $. 在无磁屏蔽条件下的噪声测试结果显示, 二阶梯度交叉耦合SQUID电流传感器具有良好的抵抗环境电磁干扰能力.
    Superconducting quantum interference device (SQUID) has extremely high magnetic field sensitivity, current sensitivity, and can detect a low-noise weak current signal. The SQUID current sensor has become the only option of the readout of low-noise detector, such as transition-edge sensor (TES). In this paper, a second-order gradiometric cross-coupled SQUID current sensor for TES application is developed. According to the requirements for TES detectors, the structure and various parameters of SQUID current sensor are designed. The SQUID loop, input coil and feedback coil of the SQUID current sensor all use the second-order gradiometric structure. All the couple ways between SQUID loop and input coil or feedback coil adopt cross-coupling mode in different planes, which can effectively weaken the parasitic capacitance. A second-order gradiometric cross-coupled SQUID current sensor based on Nb/Al-AlOx/Nb Josephson junction is successfully fabricated on a silicon wafer by optimizing the process. The properties of the second-order gradiometric cross-coupled SQUID current sensor are measured at liquid helium temperature. The bias current of SQUID is 215 μA when the modulation depth of V-Φ modulation curve is maximum. The maximum modulation peak of SQUID is 31 μV. The flux-to-voltage transfer coefficient of SQUID is 108 μV/Φ0. The input coil current sensitivity is 17 μA/Φ0, the mutual inductance between SQUID loop and input coil is 117 pH. The current sensitivity of feedback coil is 86 μA/Φ0, the mutual inductance between SQUID loop and feedback coil is 23 pH. The second-order gradiometric cross-coupled SQUID current sensor has a white flux noise of 2 μΦ0/$ \sqrt{{\rm{H}}{\rm{z}}} $ and a white current noise of 34 pA/$ \sqrt{{\rm{H}}{\rm{z}}} $ with 1/f corner frequency around 200 Hz. The result of noise level under the condition without magnetic shielding shows that the SQUID current sensor with second-order gradiometric cross-coupled structure has an excellent capability of weakening the environmental electromagnetic interference. In the future, we will further improve the mutual inductance of the second-order gradiometric cross-coupled SQUID current sensor between SQUID loop and input coil, optimize the size and critical current of Josephson junction, in order to improve the input sensitivity of SQUID device, reduce the current noise level and the 1/f corner frequency, and meet more requirements for TES applications.
      通信作者: 钟青, zhongq@nim.ac.cn ; 李劲劲, jinjinli@nim.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFF0206105)、国家自然科学基金(批准号: 61701470, 20161361354)和中国计量科学研究院(批准号: AKY1946, AKYZD2012)资助的课题
      Corresponding author: Zhong Qing, zhongq@nim.ac.cn ; Li Jin-Jin, jinjinli@nim.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFF0206105), the National Natural Science Foundation of China (Grant Nos. 61701470, 20161361354), and the National Institute of Metrology China (Grant Nos. AKY1946, AKYZD2012)
    [1]

    Clarke J, Braginski A I 2004 The SQUID Handbook (Vol. 1) (KgaA, Weinheim: Wiley-VCH Verlag GmbH & Co.) pp1−210

    [2]

    Granata C, Vettoliere A, Russo R, Fretto M, de Leo N, Lacquaniti V 2013 Appl. Phys. Lett. 103 102602Google Scholar

    [3]

    Ullom J N, Bennett D A 2015 Supercond. Sci. Technol. 28 084003Google Scholar

    [4]

    Jackson B D, Korte P A J, Kuur J, Mauskopf P D, Beyer J, Bruijn M P, Cros A, Gao J R, Griffin D, Hartog R, Kiviranta M, Lange G, Leeuwen B J, Macculi C, Ravera L, Trappe N, Weers H, Withington S 2012 IEEE Trans. Terahertz Sci. and Technol. 2 12Google Scholar

    [5]

    Henderson S W, Ahmed Z, Austermann J, Becker D, Bennett D A, Brown D, Chaudhuri S, Cho H M S, D'Ewart J M, Dober B, Duff S M, Dusatko J E, Fatigoni S, Frisch J C, Gard J D, Halpern M, Hilton G C, Hubmayr J, Irwin K D, Karpel E D, Kernasovskiy S S, Kuenstner S E, Kuo C L, Li D, Mates J A B, Reintsema C D, Smith S R, Ullom J, Vale L R, Winkle D D V, Vissers M, Yu C 2018 Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX Texas, United States, June 10−15 2018 p1070819

    [6]

    Cui W, Chen L B, Gao B, Guo F L, Jin H, Wang G L, Wang J J, Wang W, Wang Z S, Wang Z, Yuan F, Zhang W 2020 J. Low Temp. Phys. 199 502Google Scholar

    [7]

    Schmidt M, Helversen M, López M, Gericke F, Schlottmann E, Heindel T, Kück S, Reitzenstein S, Beyer J 2018 J. Low Temp. Phys. 193 1243Google Scholar

    [8]

    Irwin K D 2002 Physica C 368 203Google Scholar

    [9]

    Kempf S, Wegner M, Fleischmann A, Gastaldo L, Herrmann F, Papst M, Richter D, Enss C 2017 AIP Adv. 7 015007Google Scholar

    [10]

    Bennett D A, Mates J A B, Gard J D, Hoover A S, Rabin M W, Reintsema C D, Schmidt D R, Vale L R, Ullom J N 2015 IEEE Trans. Appl. Supercond. 25 2101405Google Scholar

    [11]

    Drung D, Abmann C, Beyer J, Kirste A, Peters M, Ruede F, Schurig T 2007 IEEE Trans. Appl. Supercond. 17 699Google Scholar

    [12]

    Stiehl G M, Cho H M, Hilton G C, Irwin K D, Mates J A B, Reintsema C D, Zink B L 2011 IEEE Trans. Appl. Supercond. 21 298Google Scholar

    [13]

    Beyer J, Drung D 2008 Supercond. Sci. Technol. 21 095012Google Scholar

    [14]

    Schurig T 2014 J. Phys. Conf. Ser. 568 032015Google Scholar

    [15]

    Silva-Feaver M, Arnold K, Barron D, Denison E V, Dobbs M, Groh J, Hilton G, Hubmayr J, Irwin K, Lee A, Vale L R 2018 J. Low Temp. Phys. 193 600Google Scholar

    [16]

    Schurig T, Trahms L 2009 IEEE CSC & ESAS European Superconductivity News Forum 3 RN9Google Scholar

    [17]

    韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇 2019 物理学报 68 138501Google Scholar

    Han H X, Zhang G F, Zhang X, Liang T T, Ying L L, Wang Y L, Peng W, Wang Z 2019 Acta Phys. Sin. 68 138501Google Scholar

    [18]

    Drung D 2016 IEEE CSC & ESAS European Supercon- ductivity News Forum 10 CR70

    [19]

    SQUID sensors, Magnicon GmbH www.magnicon.com [2021-02-07]

    [20]

    LTS Sensors, STAR Cryoelectronics www.starcryo.com [2021-02-07]

    [21]

    Cantor R, Hall J A, Matlachov A N, Volegov P L 2007 IEEE Trans. Appl. Supercond. 17 672Google Scholar

    [22]

    Kempf S, Ferring A, Fleischmann A, Gastaldo L, Enss C, 2013 Supercond. Sci. Technol. 26 065012Google Scholar

    [23]

    Kempf S, Ferring A, Fleischmann A, Enss C 2015 Supercond. Sci. Technol. 28 045008Google Scholar

    [24]

    Doriese W B, Morgan K M, Bennett D A, Denison E V, Fitzgerald C P, Fowler J W, Gard J D, Hays-Wehle J P, Hilton G C, Irwin K D, Joe Y I, Mates J A B, O’Neil G C, Reintsema C D, Robbins N O, Schmidt D R, Swetz D S, Tatsuno H, Vale L R, Ullom J N 2016 J. Low Temp Phys 184 389Google Scholar

    [25]

    Zhang X, Zhang G, Wang Y, Rong L, Zhang S, Wu J, Qiu L, Xie X, Wang Z 2019 IEEE Trans. Appl. Supercond. 29 1600503Google Scholar

    [26]

    Kuriki S, Isobe Y, Mizutani Y 1987 J. Appl. Phys. 61 781Google Scholar

    [27]

    Carelli P, Chiaventi L, Leoni R, Pullano M, Spagnolo G S 1991 Clin. Phys. Physiol. Meas. 12 13Google Scholar

    [28]

    Beyer J, Drung D, Peters M, Schurig T, Bandler S R 2009 IEEE Trans. Appl. Supercond. 19 505Google Scholar

    [29]

    Xu D, Li J, Cao W, Liu J, Chen W 2020 Conference on Precision Electromagnetic Measurements Denver, United States, August 24−28 2020 p9191689

    [30]

    Fourie C J, Perold W J 2005 IEEE Trans. Appl. Supercond. 15 300Google Scholar

    [31]

    Drung D, Hinnrichs C, Barthelmess H 2006 Supercond. Sci. Technol. 19 S235Google Scholar

    [32]

    Drung D, Ludwig F, Müller W, Steinhoff U, Trahms L, Koch H, Shen Y Q, Jensen M B, Vase P, Holst T, Freltoft T, Curio G 1996 Appl. Phys. Lett. 68 1421Google Scholar

  • 图 1  (a) SQUID环路示意图; (b) 一阶梯度并联SQUID环路结构示意图; (c) 一阶梯度串联SQUID环路结构示意图; (d) 二阶梯度并联SQUID环路结构示意图

    Fig. 1.  Schematic diagrams of (a) SQUID loop, (b) a first-order gradiometric parallel SQUID loop, (c) a first-order gradiometric series SQUID loop, and (d) a second-order gradiometric parallel SQUID loop.

    图 2  二阶梯度交叉耦合SQUID电流传感器扫描电子显微镜图

    Fig. 2.  Scanning electron microscope picture of the second-order gradiometric cross-coupled SQUID current sensor.

    图 3  二阶梯度交叉耦合SQUID电流传感器等效电路图

    Fig. 3.  Equivalent circuit of the second-order gradiometric cross-coupled SQUID current sensor.

    图 4  二阶梯度交叉耦合SQUID电流传感器的电流-电压曲线

    Fig. 4.  Current-voltage curves of the second-order gradiometric cross-coupled SQUID current sensor.

    图 5  二阶梯度交叉耦合SQUID输入线圈的电压-磁通调制曲线

    Fig. 5.  Voltage-flux curve for the input coil of the second-order gradiometric cross-coupled SQUID.

    图 6  二阶梯度交叉耦合SQUID反馈线圈的电压-磁通调制曲线

    Fig. 6.  Voltage-flux curve for the feedback coil of the second-order gradiometric cross-coupled SQUID.

    图 7  二阶梯度交叉耦合SQUID电流传感器的噪声曲线

    Fig. 7.  Noise curves of the second-order gradiometric cross-coupled SQUID current sensor.

    表 1  二阶梯度交叉耦合SQUID电流传感器的设计参数

    Table 1.  Design parameters of the second-order gradiometric cross-coupled SQUID current sensor.

    参数设计值
    约瑟夫森结尺寸S/(µm × µm)7 × 7
    约瑟夫森结临界电流I0/µA49
    约瑟夫森结电容CJ/pF2
    并联电阻Rsh0.84
    回滞系数βc0.2
    调制系数βL1.6
    SQUID环路电感LSQ/pH33
    SQUID环路与输入线圈互感MIN/pH130
    SQUID环路与反馈线圈互感MFB/pH36
    输入线圈电感LIN/nH3
    反馈线圈电感LFB/nH1
    输入电流灵敏度1/MIN/(μA·Φ0–1)15
    反馈电流灵敏度1/MFB/(μA·Φ0–1)56
    下载: 导出CSV

    表 2  二阶梯度交叉耦合SQUID电流传感器的性能参数

    Table 2.  Property parameters of the second-order gradiometric cross-coupled SQUID current sensor.

    参数实测值
    偏置电流Ib, max/μA215
    并联电阻Rsh1
    回滞系数βc0.67
    输入电流灵敏度1/MIN/(μA·Φ0–1)17
    反馈电流灵敏度1/MFB/(μA·Φ0–1)86
    磁通-电压转换系数VΦ/(μV·Φ0–1)108
    最大调制峰值Vpp/μV31
    磁通白噪声$\sqrt{S_{\varPhi}} $/(μΦ0·$ \sqrt{{\rm{H}}{\rm{z}}} $–1)2
    电流白噪声$\sqrt{S_I} $/(pA·$ \sqrt{{\rm{H}}{\rm{z}}} $–1)34
    SQUID环路与输入线圈互感MIN/pH117
    SQUID环路与反馈线圈互感MFB/pH24
    下载: 导出CSV
  • [1]

    Clarke J, Braginski A I 2004 The SQUID Handbook (Vol. 1) (KgaA, Weinheim: Wiley-VCH Verlag GmbH & Co.) pp1−210

    [2]

    Granata C, Vettoliere A, Russo R, Fretto M, de Leo N, Lacquaniti V 2013 Appl. Phys. Lett. 103 102602Google Scholar

    [3]

    Ullom J N, Bennett D A 2015 Supercond. Sci. Technol. 28 084003Google Scholar

    [4]

    Jackson B D, Korte P A J, Kuur J, Mauskopf P D, Beyer J, Bruijn M P, Cros A, Gao J R, Griffin D, Hartog R, Kiviranta M, Lange G, Leeuwen B J, Macculi C, Ravera L, Trappe N, Weers H, Withington S 2012 IEEE Trans. Terahertz Sci. and Technol. 2 12Google Scholar

    [5]

    Henderson S W, Ahmed Z, Austermann J, Becker D, Bennett D A, Brown D, Chaudhuri S, Cho H M S, D'Ewart J M, Dober B, Duff S M, Dusatko J E, Fatigoni S, Frisch J C, Gard J D, Halpern M, Hilton G C, Hubmayr J, Irwin K D, Karpel E D, Kernasovskiy S S, Kuenstner S E, Kuo C L, Li D, Mates J A B, Reintsema C D, Smith S R, Ullom J, Vale L R, Winkle D D V, Vissers M, Yu C 2018 Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX Texas, United States, June 10−15 2018 p1070819

    [6]

    Cui W, Chen L B, Gao B, Guo F L, Jin H, Wang G L, Wang J J, Wang W, Wang Z S, Wang Z, Yuan F, Zhang W 2020 J. Low Temp. Phys. 199 502Google Scholar

    [7]

    Schmidt M, Helversen M, López M, Gericke F, Schlottmann E, Heindel T, Kück S, Reitzenstein S, Beyer J 2018 J. Low Temp. Phys. 193 1243Google Scholar

    [8]

    Irwin K D 2002 Physica C 368 203Google Scholar

    [9]

    Kempf S, Wegner M, Fleischmann A, Gastaldo L, Herrmann F, Papst M, Richter D, Enss C 2017 AIP Adv. 7 015007Google Scholar

    [10]

    Bennett D A, Mates J A B, Gard J D, Hoover A S, Rabin M W, Reintsema C D, Schmidt D R, Vale L R, Ullom J N 2015 IEEE Trans. Appl. Supercond. 25 2101405Google Scholar

    [11]

    Drung D, Abmann C, Beyer J, Kirste A, Peters M, Ruede F, Schurig T 2007 IEEE Trans. Appl. Supercond. 17 699Google Scholar

    [12]

    Stiehl G M, Cho H M, Hilton G C, Irwin K D, Mates J A B, Reintsema C D, Zink B L 2011 IEEE Trans. Appl. Supercond. 21 298Google Scholar

    [13]

    Beyer J, Drung D 2008 Supercond. Sci. Technol. 21 095012Google Scholar

    [14]

    Schurig T 2014 J. Phys. Conf. Ser. 568 032015Google Scholar

    [15]

    Silva-Feaver M, Arnold K, Barron D, Denison E V, Dobbs M, Groh J, Hilton G, Hubmayr J, Irwin K, Lee A, Vale L R 2018 J. Low Temp. Phys. 193 600Google Scholar

    [16]

    Schurig T, Trahms L 2009 IEEE CSC & ESAS European Superconductivity News Forum 3 RN9Google Scholar

    [17]

    韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇 2019 物理学报 68 138501Google Scholar

    Han H X, Zhang G F, Zhang X, Liang T T, Ying L L, Wang Y L, Peng W, Wang Z 2019 Acta Phys. Sin. 68 138501Google Scholar

    [18]

    Drung D 2016 IEEE CSC & ESAS European Supercon- ductivity News Forum 10 CR70

    [19]

    SQUID sensors, Magnicon GmbH www.magnicon.com [2021-02-07]

    [20]

    LTS Sensors, STAR Cryoelectronics www.starcryo.com [2021-02-07]

    [21]

    Cantor R, Hall J A, Matlachov A N, Volegov P L 2007 IEEE Trans. Appl. Supercond. 17 672Google Scholar

    [22]

    Kempf S, Ferring A, Fleischmann A, Gastaldo L, Enss C, 2013 Supercond. Sci. Technol. 26 065012Google Scholar

    [23]

    Kempf S, Ferring A, Fleischmann A, Enss C 2015 Supercond. Sci. Technol. 28 045008Google Scholar

    [24]

    Doriese W B, Morgan K M, Bennett D A, Denison E V, Fitzgerald C P, Fowler J W, Gard J D, Hays-Wehle J P, Hilton G C, Irwin K D, Joe Y I, Mates J A B, O’Neil G C, Reintsema C D, Robbins N O, Schmidt D R, Swetz D S, Tatsuno H, Vale L R, Ullom J N 2016 J. Low Temp Phys 184 389Google Scholar

    [25]

    Zhang X, Zhang G, Wang Y, Rong L, Zhang S, Wu J, Qiu L, Xie X, Wang Z 2019 IEEE Trans. Appl. Supercond. 29 1600503Google Scholar

    [26]

    Kuriki S, Isobe Y, Mizutani Y 1987 J. Appl. Phys. 61 781Google Scholar

    [27]

    Carelli P, Chiaventi L, Leoni R, Pullano M, Spagnolo G S 1991 Clin. Phys. Physiol. Meas. 12 13Google Scholar

    [28]

    Beyer J, Drung D, Peters M, Schurig T, Bandler S R 2009 IEEE Trans. Appl. Supercond. 19 505Google Scholar

    [29]

    Xu D, Li J, Cao W, Liu J, Chen W 2020 Conference on Precision Electromagnetic Measurements Denver, United States, August 24−28 2020 p9191689

    [30]

    Fourie C J, Perold W J 2005 IEEE Trans. Appl. Supercond. 15 300Google Scholar

    [31]

    Drung D, Hinnrichs C, Barthelmess H 2006 Supercond. Sci. Technol. 19 S235Google Scholar

    [32]

    Drung D, Ludwig F, Müller W, Steinhoff U, Trahms L, Koch H, Shen Y Q, Jensen M B, Vase P, Holst T, Freltoft T, Curio G 1996 Appl. Phys. Lett. 68 1421Google Scholar

  • [1] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化. 物理学报, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] 郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才. 地基引力波探测激光干涉仪的真空残余气体噪声分析. 物理学报, 2024, 73(5): 050401. doi: 10.7498/aps.73.20231462
    [3] 石中誉, 代旭城, 王浩宇, 麦展彰, 欧阳鹏辉, 王翼卓, 柴亚强, 韦联福, 刘旭明, 潘长钊, 郭伟杰, 舒诗博, 王轶文. 超导动态电感探测器的噪声谱分析. 物理学报, 2024, 73(3): 038501. doi: 10.7498/aps.73.20231504
    [4] 陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽. 抽运-检测型原子磁力仪对电流源噪声的测量. 物理学报, 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [5] 陈大勇, 缪培贤. 抽运-检测型原子磁力仪对电流源噪声的测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211122
    [6] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理. 物理学报, 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [7] 梁恬恬, 张国峰, 伍文涛, 倪志, 王永良, 应利良, 伍俊, 荣亮亮, 彭炜, 高波. 串联超导量子干涉器件阵列制备与测试分析. 物理学报, 2021, 70(17): 178501. doi: 10.7498/aps.70.20210467
    [8] 韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇. 低噪声超导量子干涉器件磁强计设计与制备. 物理学报, 2019, 68(13): 138501. doi: 10.7498/aps.68.20190483
    [9] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪. 物理学报, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [10] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响. 物理学报, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [11] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [12] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [13] 陈钊, 何根芳, 张青雅, 刘建设, 李铁夫, 陈炜. 具有Washer型输入线圈的超导量子干涉放大器的制备与表征. 物理学报, 2015, 64(12): 128501. doi: 10.7498/aps.64.128501
    [14] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [15] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [16] 王宁, 金贻荣, 邓辉, 吴玉林, 郑国林, 李绍, 田野, 任育峰, 陈莺飞, 郑东宁. 基于高温超导量子干涉仪的超低场核磁共振成像研究. 物理学报, 2012, 61(21): 213302. doi: 10.7498/aps.61.213302
    [17] 唐冬和, 杜磊, 王婷岚, 陈华, 贾晓菲. 纳米器件电流噪声的散射理论统一模型研究. 物理学报, 2011, 60(9): 097202. doi: 10.7498/aps.60.097202
    [18] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究. 物理学报, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [19] 孙 涛, 陈兴国, 胡晓宁, 李言谨. HgCdTe长波光伏探测器的表面漏电流及1/f噪声研究. 物理学报, 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
    [20] 王强华, 姚希贤. Josephson磁通孤子振荡器中热噪声研究. 物理学报, 1993, 42(10): 1661-1668. doi: 10.7498/aps.42.1661
计量
  • 文章访问数:  5212
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-31
  • 修回日期:  2021-02-05
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-06-20

/

返回文章
返回