-
GaInAsSb在红外光电领域具有重要应用价值, 但是窄带隙材料较高的本征载流子浓度和俄歇复合系数使其室温暗电流密度较高, 需要进行制冷才能获得满足应用要求的光电性能. 本文利用表面宽带隙半导体纳米柱阵列和背面高反射率金属对GaInAsSb p-n结有源区进行双面光调控, 将光限制在较薄的有源区进行吸收, 从而提升光电转换量子效率并降低室温暗电流. 采用时域有限差分方法仿真分析光学性能, 采用数值分析方法求解载流子输运方程以分析光电性能. 理论结果表明, 在当前工艺水平下, 双面光调控结构通过激发光学共振效应可以使厚度1 μm的Ga0.84In0.16As0.14Sb0.86 p-n结在1.0—2.3 μm红外波段的平均量子效率达到90%, 扩散暗电流密度可达5×10–6 A/cm2, 暗电流主要来自于表面复合, 俄歇复合的贡献较小.GaInAsSb quaternary alloys have attracted much interest in infrared optoelectronic applications due to their versatility in a large range of energy gaps from 0.296 eV to 0.726 eV when lattice matches to GaSb wafer. However, due to the high intrinsic carrier concentration and Auger recombination, GaInAsSb p-n junctions typically are characterized by high dark current density at room temperature and need to be operated at low temperature to obtain high optoelectronic performance. In this work, a front surface wide-bandgap semiconductor nano pillar array (NPA) and a high reflective metal back surface reflector (BSR) are designed to modulate optoelectronic performances of GaInAsSb p-n junction. The optical and optoelectronic characteristics are analyzed by the finite difference time domain simulation and the numerical solution of carrier transport equations, respectively. It shows that the NPA-BSR structure can trigger Mie-type resonance, Wood-Rayleigh anomaly effect and Fabry-Perot resonance, which can be used to trap the light efficiently in an ultrathin GaInAsSb film. Owing to these nanophotonic effects, the average light absorption of ~90% can be obtained in 1.0–2.3 μm infrared waveband for 1μm Ga0.84In0.16As0.14Sb0.86. It also shows that the Auger recombination can be suppressed with thickness decreasing which leads the carrier collection efficiency to increase and the dark current density to decrease. Theoretical results show that the carrier collection efficiency of ~99% and dark current density of ~5×10–6 A/cm2 can be obtained for the 1 μm Ga0.84In0.16As0.14Sb0.86 p-n junction. With these unique optoelectronic properties, the NPA-BSR nanophotonic structure can become a very promising method to realize the high performance ultrathin GaInAsSb infrared optoelectronic devices.
-
Keywords:
- nanophotonic /
- GaInAsSb /
- infrared
[1] 刘超 魏志鹏 安宁 何斌太 刘鹏程 刘国军 2014 物理学报 63 248102Google Scholar
Liu C, Wei Z P, An N, He B T, Liu P C, Liu G J 2014 Acta Phys. Sin. 63 248102Google Scholar
[2] Mitsuhara M, Ohiso Y, Matsuzaki H 2020 J. Cryst. Growth 535 125551Google Scholar
[3] Hao H Y, Wang G W, Han X, Jiang D W, Sun, Y Y, Guo C Y, Xiang W, Xu Y Q and Niu Z C 2018 AIP Adv. 8 095106Google Scholar
[4] Lou Y Y, Zhang X L, Huang A B, Wang Y 2018 Sol. Energ. Mat. Sol. C. 172 124
[5] Liu Q, Marshall A, Kirer A 2019 Materials (Basel) 12 1743Google Scholar
[6] Wang Y, Lou Y Y 2015 Renew. Energ. 75 8Google Scholar
[7] You M H, Sun Q X, Yin L P, Fan J J, Liang X M, Li X, Yu X L, Li S J, Liu J S 2016 J. Nanomater. 2016 393502
[8] Liang B L, Chen D Y, Wang B, Kwasniewski T A, Wang Z G 2010 IEEE T. Electron Dev. 57 361Google Scholar
[9] Rothmayr F, Pfenning A, Kistner C, Koeth J, Knebl G, Schade A, Krueger S, Worschech L, Hartmann F, Höfling S 2018 Appl. Phys. Lett. 112 161107Google Scholar
[10] Peng X C, Guo X, Zhang B L, Li X P, Zhao X W, Dong X, Zheng W, Du G T 2010 Infrared Phys. Techn. 53 37Google Scholar
[11] 秦飞飞 张海明 王彩霞 郭聪 张晶晶 2014 物理学报 63 198802Google Scholar
Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802Google Scholar
[12] El-Batawy Y M, Deen M J 2003 Proc. SPIE 4999 363Google Scholar
[13] Jiang A Q, Osamu Y, Chen L Y 2020 SCI REP-UK 10 12780Google Scholar
[14] Chen H L, Cattoni A, Lépinau R D, Walker A W, Höhn O, Lackner D, Siefer G, Faustini M, Vandamme N, Goffard J, Behaghel B, Dupuis C, Bardou N, Dimroth F, Collin S 2019 Nat. energy 4 761Google Scholar
[15] Amalathas A P, Alkaisi M M 2019 Micromachines 10 619Google Scholar
[16] Proise F, Joudrier A, Pardo F, Pelouard J, Guillemoles J 2018 Opt. Express 26 A806Google Scholar
[17] Yang Z H, Gao P Q, Zhang C, Li X F, Ye J C 2016 SCI REP-UK 6 30503Google Scholar
[18] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B 2016 Science 354 aag2472Google Scholar
[19] Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23Google Scholar
[20] Behaghel B, Tamaki R, Vandamme N, Watanabe K, Dupuis C, Bardou N, Sodabanlu H, Cattoni A, Okada Y, Sugiyama M, Collin S, Guillemoles J 2015 Appl. Phys. Lett. 106 081107Google Scholar
[21] Peng X C, Wang Z D, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2019 Phys. Rev. Appl. 12 064002Google Scholar
[22] 彭新村, 王智栋, 曾梦丝, 刘云, 邹继军, 朱志甫, 邓文娟 2019 无机材料学报 34 734Google Scholar
Peng X C, Wang Z D, Zeng M S, Liu Y, Zou J J, Zhu Z F, Deng W J 2019 J. Inorg. Mater. 34 734Google Scholar
[23] Wang C A, Shiau D A, Murphy P G, O'Brien P W, Huang R K, Connors M K, Anderson A C, Donetsky D, Anikeev S, Belenky G, Depoy D M, Nichols G 2004 J. Electron. Mater. 33 213Google Scholar
[24] 彭新村 王智栋 邓文娟 朱志甫 邹继军 张益军 2020 物理学报 69 068501Google Scholar
Peng X C, Wang Z D, Deng W J, Zhu Z F, Zou J J, Zhang Y J 2020 Acta Phys. Sin. 69 068501Google Scholar
[25] Tian Y, Chua S J, Jin Y X 2003 Microelectron. J. 34 304
[26] Peng X C, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2020 Opt. Express 28 860Google Scholar
[27] Wang Y, Chen N F, Zhang X W, Huang T M, Yin Z G, Wang Y S, Zhang H 2010 Sol. Energ. Mat. Sol. C. 94 1704Google Scholar
[28] Tang L L, Fraas L M, Liu Z M, Xu C, Chen X Y 2016 IEEE T. Electron Dev. 63 3591Google Scholar
[29] Dashiell M W, Beausang J F, Ehsani H, Nichols G J, Depoy D M, Danielson L R, Talamo P, Rahner K D, Brown E J, Burger S R, Fourspring P M, Topper W F, Jr., Baldasaro P F, Wang C A, Huang R K, Connors M K, Turner G W, Shellenbarger Z A, Taylor G, Li J Z, Martinelli R, Donetski D, Anikeev S, Belenky G L, Luryi S 2006 IEEE T. Electron Dev. 53 2879Google Scholar
[30] Groep J, Polman A 2013 Opt. Express 21 26285Google Scholar
[31] Wang Z Y, Zhang R J, Wang S Y, Lu M, Chen X, Zheng Y X, Chen L Y, Ye Z, Wang C Z, Ho K M 2015 SCI REP-UK 5 7810Google Scholar
[32] Wang C A 2004 AIP Conf. Proc. 738 255Google Scholar
-
图 4 不同光学结构下Ga0.84In0.16As0.14Sb0.86 p-n结有源区的光吸收谱 (a)NPA和BSR双面光调控结构; (b)NPA单面光调控结构; (c)表面1/4波长Si3N4增透膜和BSR双面光调控结构; (d)表面1/4波长Si3N4增透膜单面光调控结构. 其中NPA尺寸为H = 300 nm, D = 540 nm, F = 0.6, Si3N4增透膜的中心波长设计为1.6 µm
Fig. 4. Absorption spectrums of the Ga0.84In0.16As0.14Sb0.86 p-n junction active region under different optical structures: (a) NPA-BSR two-side light modulation structure; (b) NPA one-side light modulation structure; (c) surface λ/4 Si3N4 anti-reflection film and BSR two-side light modulation structure; (d) surface λ/4 Si3N4 anti-reflection film one-side light modulation structure. The NPA geometry parameters are set as H = 300 nm, D = 540 nm and F = 0.6, central wavelength of the λ/4 Si3N4 anti-reflection film is set as 1.6 µm.
图 6 不同复合参数下载流子收集效率谱C(λ)随波长λ和有源区总厚度L的变化 (a) τ0 =1 µs, SF = SB = 102 cm/s; (b) τ0 =10–3 µs, SF = SB = 102 cm/s; (c) τ0 =1 µs, SF = 106 cm/s, SB = 102 cm/s; (d) τ0 =1 µs, SF = 102 cm/s, SB = 106 cm/s. τ0为SRH复合本征寿命, SF和SB分别为有源区前后表面复合速度
Fig. 6. Dependence of the carrier collection efficiency spectrums C(λ) on λ and active region thickness L for different carrier recombination parameters: (a) τ0 =1 µs, SF = SB = 102 cm/s; (b) τ0 =10–3 µs, SF = SB = 102 cm/s; (c) τ0 =1 µs, SF = 106 cm/s, SB = 102 cm/s; (d) τ0 =1 µs, SF = 102 cm/s, SB = 106 cm/s.
表 1 室温(300 K)下Ga0.84In0.16As0.14Sb0.86 p-n结有源区的结构和物理参数[27-29]
Table 1. Structure and physical parameters of the Ga0.84In0.16As0.14Sb0.86 p-n junction at room temperature (300 K)[27-29].
材料 结构参数 物理参数 厚度/µm 掺杂浓
度/cm–3直接复合系
数/(cm3·s–1)俄歇复合系
数/(cm6·s–1)SRH本征复
合寿命/µs表面复合
速度/(cm·s–1)少子迁移
率/(cm2·V·s–1)n型层 0.2 1 × 1017 1 × 10–10 Cn = 1 × 10–27 τ0 = 10–3—1 SF = 0—106 µh = 618 p型层 L—0.2 1 × 1017 Cp = 2 × 10–28 SB = 0—106 µe = 5162 -
[1] 刘超 魏志鹏 安宁 何斌太 刘鹏程 刘国军 2014 物理学报 63 248102Google Scholar
Liu C, Wei Z P, An N, He B T, Liu P C, Liu G J 2014 Acta Phys. Sin. 63 248102Google Scholar
[2] Mitsuhara M, Ohiso Y, Matsuzaki H 2020 J. Cryst. Growth 535 125551Google Scholar
[3] Hao H Y, Wang G W, Han X, Jiang D W, Sun, Y Y, Guo C Y, Xiang W, Xu Y Q and Niu Z C 2018 AIP Adv. 8 095106Google Scholar
[4] Lou Y Y, Zhang X L, Huang A B, Wang Y 2018 Sol. Energ. Mat. Sol. C. 172 124
[5] Liu Q, Marshall A, Kirer A 2019 Materials (Basel) 12 1743Google Scholar
[6] Wang Y, Lou Y Y 2015 Renew. Energ. 75 8Google Scholar
[7] You M H, Sun Q X, Yin L P, Fan J J, Liang X M, Li X, Yu X L, Li S J, Liu J S 2016 J. Nanomater. 2016 393502
[8] Liang B L, Chen D Y, Wang B, Kwasniewski T A, Wang Z G 2010 IEEE T. Electron Dev. 57 361Google Scholar
[9] Rothmayr F, Pfenning A, Kistner C, Koeth J, Knebl G, Schade A, Krueger S, Worschech L, Hartmann F, Höfling S 2018 Appl. Phys. Lett. 112 161107Google Scholar
[10] Peng X C, Guo X, Zhang B L, Li X P, Zhao X W, Dong X, Zheng W, Du G T 2010 Infrared Phys. Techn. 53 37Google Scholar
[11] 秦飞飞 张海明 王彩霞 郭聪 张晶晶 2014 物理学报 63 198802Google Scholar
Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802Google Scholar
[12] El-Batawy Y M, Deen M J 2003 Proc. SPIE 4999 363Google Scholar
[13] Jiang A Q, Osamu Y, Chen L Y 2020 SCI REP-UK 10 12780Google Scholar
[14] Chen H L, Cattoni A, Lépinau R D, Walker A W, Höhn O, Lackner D, Siefer G, Faustini M, Vandamme N, Goffard J, Behaghel B, Dupuis C, Bardou N, Dimroth F, Collin S 2019 Nat. energy 4 761Google Scholar
[15] Amalathas A P, Alkaisi M M 2019 Micromachines 10 619Google Scholar
[16] Proise F, Joudrier A, Pardo F, Pelouard J, Guillemoles J 2018 Opt. Express 26 A806Google Scholar
[17] Yang Z H, Gao P Q, Zhang C, Li X F, Ye J C 2016 SCI REP-UK 6 30503Google Scholar
[18] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B 2016 Science 354 aag2472Google Scholar
[19] Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23Google Scholar
[20] Behaghel B, Tamaki R, Vandamme N, Watanabe K, Dupuis C, Bardou N, Sodabanlu H, Cattoni A, Okada Y, Sugiyama M, Collin S, Guillemoles J 2015 Appl. Phys. Lett. 106 081107Google Scholar
[21] Peng X C, Wang Z D, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2019 Phys. Rev. Appl. 12 064002Google Scholar
[22] 彭新村, 王智栋, 曾梦丝, 刘云, 邹继军, 朱志甫, 邓文娟 2019 无机材料学报 34 734Google Scholar
Peng X C, Wang Z D, Zeng M S, Liu Y, Zou J J, Zhu Z F, Deng W J 2019 J. Inorg. Mater. 34 734Google Scholar
[23] Wang C A, Shiau D A, Murphy P G, O'Brien P W, Huang R K, Connors M K, Anderson A C, Donetsky D, Anikeev S, Belenky G, Depoy D M, Nichols G 2004 J. Electron. Mater. 33 213Google Scholar
[24] 彭新村 王智栋 邓文娟 朱志甫 邹继军 张益军 2020 物理学报 69 068501Google Scholar
Peng X C, Wang Z D, Deng W J, Zhu Z F, Zou J J, Zhang Y J 2020 Acta Phys. Sin. 69 068501Google Scholar
[25] Tian Y, Chua S J, Jin Y X 2003 Microelectron. J. 34 304
[26] Peng X C, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2020 Opt. Express 28 860Google Scholar
[27] Wang Y, Chen N F, Zhang X W, Huang T M, Yin Z G, Wang Y S, Zhang H 2010 Sol. Energ. Mat. Sol. C. 94 1704Google Scholar
[28] Tang L L, Fraas L M, Liu Z M, Xu C, Chen X Y 2016 IEEE T. Electron Dev. 63 3591Google Scholar
[29] Dashiell M W, Beausang J F, Ehsani H, Nichols G J, Depoy D M, Danielson L R, Talamo P, Rahner K D, Brown E J, Burger S R, Fourspring P M, Topper W F, Jr., Baldasaro P F, Wang C A, Huang R K, Connors M K, Turner G W, Shellenbarger Z A, Taylor G, Li J Z, Martinelli R, Donetski D, Anikeev S, Belenky G L, Luryi S 2006 IEEE T. Electron Dev. 53 2879Google Scholar
[30] Groep J, Polman A 2013 Opt. Express 21 26285Google Scholar
[31] Wang Z Y, Zhang R J, Wang S Y, Lu M, Chen X, Zheng Y X, Chen L Y, Ye Z, Wang C Z, Ho K M 2015 SCI REP-UK 5 7810Google Scholar
[32] Wang C A 2004 AIP Conf. Proc. 738 255Google Scholar
计量
- 文章访问数: 4359
- PDF下载量: 61
- 被引次数: 0