搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稳定的高亮度低速亚稳态氦原子束流

陈娇娇 孙羽 温金录 胡水明

引用本文:
Citation:

稳定的高亮度低速亚稳态氦原子束流

陈娇娇, 孙羽, 温金录, 胡水明

A bright and stable beam of slow metastable helium atoms

Chen Jiao-Jiao, Sun Yu, Wen Jin-Lu, Hu Shui-Ming
PDF
HTML
导出引用
  • 稳定的高强度原子束流源是很多精密测量实验的关键. 亚稳态($2^3{\rm S}$)氦原子的精密光谱测量在检验量子电动力学、测定精细结构常数研究中受到重要关注. 本文利用激光冷却方法增强束流强度、通过塞曼减速器降低原子的纵向速度, 并利用反馈控制稳定束流强度. 实验测得, 所产生的亚稳态氦原子连续束流在$(100\pm 3.6)$ m/s 速度下, 强度达$5.8\times 10^{12}$ atoms/(s·sr), 相对稳定度为 0.021%. 利用该原子束, 示范了在仅0.1%的饱和光强条件下进行$^4{\rm{He}}$原子$2^3{\rm S}—2^3{\rm P}$跃迁的光谱探测, 此时由探测光功率带来的频移低于1 kHz.
    A stable high-intensity atomic beam source plays a key role in many precision measurements. The precision spectroscopy of slow metastable ($2^3{\rm S}$) helium atoms is of great interest in testing quantum electrodynamics and determining the fine structure constant. By improving the source cavity structure and using laser cooling method, the beam flux is greatly enhanced. The added Zeeman slower reduces the longitudinal velocity of atoms, and at the same time increases the beam brightness of atoms at one single speed. Near the back end of Zeeman slower, a two-dimensional magneto-optical trap is added to collimate and focus the atomic beam. In addition, A beam stabilizing system is developed by using feedback control method. By changing the frequency of transverse cooling laser to change the cooling efficiency, the fluctuation of atomic beam intensity can be compensated in real time, and then the beam intensity can be stabilized at the target number. Experiments show that the continuous beam of metastable helium atoms at a velocity of $(100\pm 3.6)$ m/s has an intensity of $5.8\times10^{12}$ atoms/s/sr and a relative stability of 0.021%. In the experiment of precise spectral measurement based on atomic beam, the narrow longitudinal velocity distribution reduces the lateral Doppler broadening effect, and the lower longitudinal velocity also reasonably reduces the systematic error caused by the first-order Doppler effect. The atomic beam with such high intensity and stability in a single momentum and quantum state obviously improves the signal-to-noise ratio of the spectrum, and further reduces the statistical error of the results in the same detection time. Using this atomic beam, we demonstrated spectroscopy of the $2^3{\rm S}-2^3{\rm P}$ transition of $^4{\rm{He}}$ under the condition of only 0.1% of the saturated intensity. At this time, the full width at half maximum of the spectral peak is almost close to the natural line width, but the spectral signal-to-noise ratio is still better than 400 and the frequency shift caused by the detection laser power can be less than 1 kHz. This kind of spectral detection at low power can effectively reduce the power-dependent frequency shift, thus obtaining more reliable detection results. This metastable helium atom beam experimental system can also be used as a reference for similar precision measurement experiments.
      通信作者: 孙羽, robert@mail.ustc.edu.cn
    • 基金项目: 中国科学院战略性先导科技专项(B类) (批准号: XDB21010400, XDB21020100)、国家自然科学基金(批准号: 91736101, 21688102, 11304303, 91436209, 21427804)和安徽量子信息技术首创项目(批准号: AHY110000)资助的课题
      Corresponding author: Sun Yu, robert@mail.ustc.edu.cn
    • Funds: Project supported by the Strategic Leading Science and Technology Project (B) of Chinese Academy of Sciences (Grant Nos. XDB21010400, XDB21020100), the National Natural Science Foundation of China (Grant Nos. 91736101, 21688102, 11304303, 91436209, 21427804), and the Initiative in Quantum Information Technologies of Anhui Province, China (Grant No. AHY110000)
    [1]

    Pachucki K, Yerokhin, V A 2015 J. Phys. Chem. Ref. Data 44 031206Google Scholar

    [2]

    Salumbides E J, Koelemeij J C J, Komasa J, Pachucki K, Eikema K S E, Ubachs W 2013 Phys. Rev. D 87 112008Google Scholar

    [3]

    Ficek F, Kimball D F J, Kozlov M G, Leefer N, Pustelny S, Budker D 2017 Phys. Rev. A 95 032505Google Scholar

    [4]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [5]

    Drake G W F 2002 Can. J. Phys. 80 1195

    [6]

    Pachucki K 2006 Phys. Rev. Lett. 97 013002Google Scholar

    [7]

    Ottermann C R, Köbschall G, Maurer K, Röhrich K, Schmitt Ch, Walther V H 1985 Nucl. Phys. A 436 688Google Scholar

    [8]

    Sick I 2015 J. Phys. Chem. Ref. Data 44 031213Google Scholar

    [9]

    Yerokhin V A, Pachucki K 2016 Phys. Rev. A 94 052508Google Scholar

    [10]

    Pahcucki K, Patkos V, Yerokhin V A 2017 Phys. Rev. A 95 062510Google Scholar

    [11]

    Feng G P, Zheng X, Sun Y R, Hu S M 2015 Phys. Rev. A 91 030502Google Scholar

    [12]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [13]

    Storry C H, Hessels E A 1998 Phys. Rev. A 58 R8Google Scholar

    [14]

    George M C, Lombardi L D, Hessels E A 2001 Phys. Rev. Lett. 87 173002Google Scholar

    [15]

    Minardi F, Bianchini G, Pastor P C, Giusfredi G, Pavone F S, Inguscio M 1999 Phys. Rev. Lett. 82 1112Google Scholar

    [16]

    Castillega J, Livingston D, Sanders A, Shiner D 2000 Phys. Rev. Lett. 84 4321Google Scholar

    [17]

    Pastor P C, Giusfredi G, Natale P D, Hagel G, Mauro C D, Inguscio M 2004 Phys. Rev. Lett. 92 023001Google Scholar

    [18]

    Zelevinsky T, Farkas D, Gabrilse G 2005 Phys. Rev. Lett. 95 203001Google Scholar

    [19]

    van Rooij R, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [20]

    Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D, Vassen W 2018 Nat. Phys. 14 1132Google Scholar

    [21]

    Zheng X, Sun Y R, Chen J J, Wen J L, Hu S M 2019 Phys. Rev. A 99 032506Google Scholar

    [22]

    冯高平, 孙羽, 郑昕, 胡水明 2014 物理学报 63 123201Google Scholar

    Feng G P, Sun Y, Zheng X, Hu S M 2014 Acta Phys. Sin. 63 123201Google Scholar

    [23]

    孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明 2012 物理学报 61 170601Google Scholar

    Sun Y, Feng G P, Cheng C F, Tu L Y, Pan H, Yang G M, Hu S M 2012 Acta Phys. Sin. 61 170601Google Scholar

    [24]

    Labeyrie G, Browaeys A, Rooijakkers W, Voelker D, Grosperrin J, Wanner B, Westbrook C I, Aspect A 1999 Eur. Phys. J. D 7 341

    [25]

    Hoogerland M D, Driessen J P J, Vredenbregt E J D, Megens H J L, Schuwer M P, Beijerinck H C W, Van Leeuwen K A K 1996 Appl. Phys. B 62 323

    [26]

    Fahey D W, Parks W F, Schearer L D 1980 J. Phys. E: Sci. Instrum. 13 381Google Scholar

    [27]

    Rothe E W, Neynaber R H, Trujillo S M 1965 J. Chem. Phys. 42 3310Google Scholar

    [28]

    Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010 Rev. Sci. Instrum. 81 123106Google Scholar

    [29]

    Rooijakkers W, Hogervorst W, Vassen W 1997 Opt. Commun. 135 149Google Scholar

    [30]

    Rooijakkers W, Hogervorst W, Vassen W 1996 Opt. Commun. 135 321

    [31]

    Swansson J A, Baldwin K G H, Hoogerland M D, Truscott A G, Buckman S J 2004 Appl. Phys. B 79 485Google Scholar

    [32]

    Hodgman S S, Dall R G, Byron L J, Baldwin K G H, Buckman S J, Truscott A G 2009 Phys. Rev. Lett. 103 053002Google Scholar

    [33]

    Yan Z C, Drake G W F 1994 Phys. Rev. A 50 R1980Google Scholar

    [34]

    Minardi F, Artoni M, Cancio P, Inguscio M, Giusfredi G, Carusotto I 1999 Phys. Rev. A 60 4164Google Scholar

    [35]

    Artoni M, Carusotto I, Minardi F 2000 Phys. Rev. A 62 023402Google Scholar

    [36]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [37]

    Smiciklas M, Shiner D 2010 Phys. Rev. Lett. 105 123001Google Scholar

  • 图 1  氦原子$2^3 {\rm S}—2^3 {\rm P}$跃迁频率测量实验装置示意图. 插图为$2^3 {\rm S}—2^3 {\rm P}$跃迁能级图. ECDL, 外腔式半导体激光器; EOM, 电光调制器; GPS, 全球定位系统; OFC, 光学频率梳; AOM, 声光调制器; BS, 分束棱镜; ULE, 超低膨胀系数标准具; FM, 幅度调制

    Fig. 1.  Schematic diagram of the experimental setup for measuring the $2^3 {\rm S}-2^3 {\rm P}$ transition frequency of helium. Inset: Energy diagram of the $2 ^3 {\rm S}-2 ^3 {\rm P}$ transitions. ECDL, external cavity diode laser; EOM, electro-optical modulator; GPS, global positioning system; OFC, optical frequency comb; AOM, acoustic-optical modulator; BS, beam splitter; PZT, piezoelectric transducer; ULE, ultralow expansion; FM, amplitude modulation.

    图 2  氦原子束流强度相对稳定度

    Fig. 2.  Diagram of the intensity stability of the helium beam.

    图 3  速度为$(100\pm3.6)$ m/s的氦原子束流强度

    Fig. 3.  Beam intensity evolution of helium atoms at $(100\pm3.6)$ m/s.

    图 4  $2^3 {\rm S}_1—2^3 {\rm P}_0$跃迁测量实验过程 (a) 光学抽运; (b) 光谱探测

    Fig. 4.  Experimental procedure of the measurement of the $2^3 {\rm S}_1-2^3 {\rm P}_0$ transition: (a) Optical pumping; (b) spectroscopy probing.

    图 5  $2^3 {\rm S}_1—2^3 {\rm P}_0$跃迁单次扫描所获得光谱

    Fig. 5.  A single scan spectrum of $2^3 {\rm S}_1 - 2^3 {\rm P}_0$ transition.

    图 6  不同探测激光功率下获得的氦原子跃迁频率

    Fig. 6.  Transition frequencies of helium obtained at different probing laser powers.

  • [1]

    Pachucki K, Yerokhin, V A 2015 J. Phys. Chem. Ref. Data 44 031206Google Scholar

    [2]

    Salumbides E J, Koelemeij J C J, Komasa J, Pachucki K, Eikema K S E, Ubachs W 2013 Phys. Rev. D 87 112008Google Scholar

    [3]

    Ficek F, Kimball D F J, Kozlov M G, Leefer N, Pustelny S, Budker D 2017 Phys. Rev. A 95 032505Google Scholar

    [4]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [5]

    Drake G W F 2002 Can. J. Phys. 80 1195

    [6]

    Pachucki K 2006 Phys. Rev. Lett. 97 013002Google Scholar

    [7]

    Ottermann C R, Köbschall G, Maurer K, Röhrich K, Schmitt Ch, Walther V H 1985 Nucl. Phys. A 436 688Google Scholar

    [8]

    Sick I 2015 J. Phys. Chem. Ref. Data 44 031213Google Scholar

    [9]

    Yerokhin V A, Pachucki K 2016 Phys. Rev. A 94 052508Google Scholar

    [10]

    Pahcucki K, Patkos V, Yerokhin V A 2017 Phys. Rev. A 95 062510Google Scholar

    [11]

    Feng G P, Zheng X, Sun Y R, Hu S M 2015 Phys. Rev. A 91 030502Google Scholar

    [12]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [13]

    Storry C H, Hessels E A 1998 Phys. Rev. A 58 R8Google Scholar

    [14]

    George M C, Lombardi L D, Hessels E A 2001 Phys. Rev. Lett. 87 173002Google Scholar

    [15]

    Minardi F, Bianchini G, Pastor P C, Giusfredi G, Pavone F S, Inguscio M 1999 Phys. Rev. Lett. 82 1112Google Scholar

    [16]

    Castillega J, Livingston D, Sanders A, Shiner D 2000 Phys. Rev. Lett. 84 4321Google Scholar

    [17]

    Pastor P C, Giusfredi G, Natale P D, Hagel G, Mauro C D, Inguscio M 2004 Phys. Rev. Lett. 92 023001Google Scholar

    [18]

    Zelevinsky T, Farkas D, Gabrilse G 2005 Phys. Rev. Lett. 95 203001Google Scholar

    [19]

    van Rooij R, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [20]

    Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D, Vassen W 2018 Nat. Phys. 14 1132Google Scholar

    [21]

    Zheng X, Sun Y R, Chen J J, Wen J L, Hu S M 2019 Phys. Rev. A 99 032506Google Scholar

    [22]

    冯高平, 孙羽, 郑昕, 胡水明 2014 物理学报 63 123201Google Scholar

    Feng G P, Sun Y, Zheng X, Hu S M 2014 Acta Phys. Sin. 63 123201Google Scholar

    [23]

    孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明 2012 物理学报 61 170601Google Scholar

    Sun Y, Feng G P, Cheng C F, Tu L Y, Pan H, Yang G M, Hu S M 2012 Acta Phys. Sin. 61 170601Google Scholar

    [24]

    Labeyrie G, Browaeys A, Rooijakkers W, Voelker D, Grosperrin J, Wanner B, Westbrook C I, Aspect A 1999 Eur. Phys. J. D 7 341

    [25]

    Hoogerland M D, Driessen J P J, Vredenbregt E J D, Megens H J L, Schuwer M P, Beijerinck H C W, Van Leeuwen K A K 1996 Appl. Phys. B 62 323

    [26]

    Fahey D W, Parks W F, Schearer L D 1980 J. Phys. E: Sci. Instrum. 13 381Google Scholar

    [27]

    Rothe E W, Neynaber R H, Trujillo S M 1965 J. Chem. Phys. 42 3310Google Scholar

    [28]

    Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010 Rev. Sci. Instrum. 81 123106Google Scholar

    [29]

    Rooijakkers W, Hogervorst W, Vassen W 1997 Opt. Commun. 135 149Google Scholar

    [30]

    Rooijakkers W, Hogervorst W, Vassen W 1996 Opt. Commun. 135 321

    [31]

    Swansson J A, Baldwin K G H, Hoogerland M D, Truscott A G, Buckman S J 2004 Appl. Phys. B 79 485Google Scholar

    [32]

    Hodgman S S, Dall R G, Byron L J, Baldwin K G H, Buckman S J, Truscott A G 2009 Phys. Rev. Lett. 103 053002Google Scholar

    [33]

    Yan Z C, Drake G W F 1994 Phys. Rev. A 50 R1980Google Scholar

    [34]

    Minardi F, Artoni M, Cancio P, Inguscio M, Giusfredi G, Carusotto I 1999 Phys. Rev. A 60 4164Google Scholar

    [35]

    Artoni M, Carusotto I, Minardi F 2000 Phys. Rev. A 62 023402Google Scholar

    [36]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [37]

    Smiciklas M, Shiner D 2010 Phys. Rev. Lett. 105 123001Google Scholar

  • [1] 管桦, 戚晓秋, 陈邵龙, 史庭云, 高克林. 锂离子精密光谱与核结构信息. 物理学报, 2024, 73(20): 204203. doi: 10.7498/aps.73.20241128
    [2] 肖峥嵘, 张恒之, 华林强, 唐丽艳, 柳晓军. 极紫外波段的少电子原子精密光谱测量. 物理学报, 2024, 73(20): 204205. doi: 10.7498/aps.73.20241231
    [3] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [4] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [5] 赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲. 频域反射法光纤延时精密测量. 物理学报, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [6] 孙婷, 王宇, 郭任彤, 卢知为, 栗建兴. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展. 物理学报, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [7] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [8] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [9] 郑昕, 孙羽, 陈娇娇, 胡水明. 氦原子2 3S–2 3P精密光谱研究. 物理学报, 2018, 67(16): 164203. doi: 10.7498/aps.67.20180914
    [10] 冯高平, 孙羽, 郑昕, 胡水明. 氦原子精密光谱实验中的精密磁场设计与测量. 物理学报, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [11] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱. 物理学报, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [12] 程存峰, 杨国民, 蒋蔚, 潘虎, 孙羽, 刘安雯, 成国胜, 胡水明. 激光冷却获得高亮度的亚稳态惰性气体原子束和原子阱. 物理学报, 2011, 60(10): 103701. doi: 10.7498/aps.60.103701
    [13] 王心亮, 陈洁, 王叶兵, 高峰, 张首刚, 刘海峰, 常宏. 利用塞曼扫频法实现对减速锶原子束速度分布的直接测量. 物理学报, 2011, 60(10): 103201. doi: 10.7498/aps.60.103201
    [14] 黄时中, 马 堃, 吴长义, 倪秀波. 氦原子1sns组态能量及其相对论修正. 物理学报, 2008, 57(9): 5469-5475. doi: 10.7498/aps.57.5469
    [15] 贺黎明, 曹 伟, 陈学谦, 朱云霞. 氦原子1snd(n=4—11)组态下1D—3D谱项分裂值的计算. 物理学报, 2005, 54(11): 5077-5081. doi: 10.7498/aps.54.5077
    [16] 朱云霞, 贺黎明, 曹 伟, 葛自明. 氦原子Rydberg态10G—10M磁精细结构的计算. 物理学报, 2005, 54(11): 5082-5088. doi: 10.7498/aps.54.5082
    [17] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正. 物理学报, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [18] 吴晓丽, 苟秉聪, 刘义东. 氦原子单激发和双激发态里德伯系列的相对论能量计算. 物理学报, 2004, 53(1): 48-53. doi: 10.7498/aps.53.48
    [19] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应. 物理学报, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [20] 高鸿奕, 陈建文, 谢红兰, 陈敏, 肖体乔, 朱佩平, 徐至展. 原子束多光束干涉实验的一种方法. 物理学报, 2002, 51(8): 1696-1699. doi: 10.7498/aps.51.1696
计量
  • 文章访问数:  5743
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2021-01-28
  • 上网日期:  2021-06-21
  • 刊出日期:  2021-07-05

/

返回文章
返回