搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位液相透射电子显微镜及其在纳米粒子表征方面的应用

刘玄玄 国洪轩 徐涛 尹奎波 孙立涛

引用本文:
Citation:

原位液相透射电子显微镜及其在纳米粒子表征方面的应用

刘玄玄, 国洪轩, 徐涛, 尹奎波, 孙立涛

In-situ liquid phase transmission electron microscope and its application in nanoparticle characterization

Liu Xuan-Xuan, Guo Hong-Xuan, Xu Tao, Yin Kui-Bo, Sun Li-Tao
PDF
HTML
导出引用
  • 近年来, 基于透射电子显微技术、微纳加工技术和薄膜制造技术的发展, 原位液相透射电子显微技术产生, 为构建多种纳米级分辨率尺度下的微实验平台, 发展新型纳米表征技术和众多领域的相关研究提供了途径. 本文首先介绍了应用于原位液相透射电子显微技术的液体腔设计要求, 然后介绍了液体腔的发展和典型的制备工艺, 最后综述了近年来液体腔透射电子显微镜在纳米粒子成核和生长方面的应用研究, 并探讨了该技术前沿发展面临的机遇和挑战. 本文将为提高我国先进纳米表征技术和原子精准构筑技术提供相关讨论和支持.
    Based on the improvement of transmission electron microscope (TEM), nano fabrication, and film deposition, and with the development of the in-situ liquid TEM and nano characterization platform, various relevant nano researches have been carried in different fields. In this article, the principle, basic design requirements, development and typical preparation technologies of the liquid cell are briefly introduced. Subsequently, the state-of-the-art applications of liquid cell transmission electron microscope in the nucleation and growth of nanoparticles are reviewed. Finally, the opportunities and challenges faced by the frontier development of this technology are also discussed. This article provides constructive discussion about and support for advanced nano characterization technology and precise manipulation of atomic structures.
      通信作者: 国洪轩, ghx@seu.edu.cn ; 孙立涛, slt@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874105)和国家杰出青年科学基金(批准号: 11525415)资助的课题
      Corresponding author: Guo Hong-Xuan, ghx@seu.edu.cn ; Sun Li-Tao, slt@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874105) and the National Science Fund for Distinguished Young Scholars of China (Grant No. 11525415)
    [1]

    Abrams I, Mcbain J 1944 Science 100 273Google Scholar

    [2]

    Xu T, Sun L 2016 Superlattice Microstruct. 99 24

    [3]

    Hansen T W, Wagner J B, Dunin-Borkowski R E 2010 Mater. Sci. Technol. 26 1338

    [4]

    Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao S X, Hudak N S, Liu X H, Subramanian A, Fan H, Qi L, Kushima A, Li J 2010 Science 330 1515Google Scholar

    [5]

    Miyata T, Mizoguchi T 2017 Ultramicroscopy 178 81

    [6]

    Tromp R M, Hull R, Vereecken P M, Williamson M J, Ross F M 2003 Nat. Mater. 2 532

    [7]

    Zheng H, Smith R K, Jun Y, Kisielowski C, Dahmen U, Alivisatos A P 2009 Science 324 1306Google Scholar

    [8]

    Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P 2012 Science 336 61Google Scholar

    [9]

    Rasool H, Dunn G, Fathalizadeh A, Zettl A 2016 Phys. Status Solidi B 253 2351Google Scholar

    [10]

    Haider M H M, Rose H R H, Uhlemann S U S, Kabius B K B, Urban K U K 1998 J. Electron. Microsc. 47 395

    [11]

    Liao H G, Zherebetskyy D, Xin H, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L W, Zheng H 2014 Science 345 916Google Scholar

    [12]

    Evans J E, Jungjohann K L, Browning N D, Arslan I 2011 Nano Lett. 11 2809

    [13]

    Park J, Zheng H, Lee W C, Geissler P L, Rabani E, Alivisatos A P 2012 ACS Nano 6 2078

    [14]

    Li D, Nielsen M H, Jonathan R I L, Frandsen C, Banfield J F, James J D Y 2012 Science 336 1014Google Scholar

    [15]

    Zhu G, Jiang Y, Lin F, Zhang H, Jin C, Yuan J, Yang D, Zhang Z 2014 Chem. Commun. 50 9447Google Scholar

    [16]

    Nielsen M H, Aloni S, De Yoreo J J 2014 Science 345 1158Google Scholar

    [17]

    Chen Q, Cho H, Manthiram K, Yoshida M, Ye X, Alivisatos A P 2015 ACS Cent. Sci. 1 33

    [18]

    Liu J, Wang Z, Sheng A, Liu F, Qin F, Wang Z L 2016 Environ. Sci. Technol. 50 5606Google Scholar

    [19]

    Tan S F, Chee S W, Lin G, Bosman M, Lin M, Mirsaidov U, Nijhuis C A 2016 J. Am. Chem. Soc. 138 5190Google Scholar

    [20]

    Dong M, Wang W, Wei W, Hu X, Qin M, Zhang Q, Sun L, Xu F 2019 J. Phys. Chem. C 123 21257Google Scholar

    [21]

    Zheng H, Claridge S A, Minor A M, Alivisatos A P, Dahmen U 2009 Nano Lett. 9 2460Google Scholar

    [22]

    Grogan J M, Rotkina L, Bau H H 2011 Phys. Rev. E: Stat., Nonlin., Soft Matter Phys. 83 61405Google Scholar

    [23]

    Chee S W, Baraissov Z, Loh N D, Matsudaira P T, Mirsaidov U 2016 J. Phys. Chem. C 120 20462Google Scholar

    [24]

    Chee S W, Anand U, Bisht G, Tan S F, Mirsaidov U 2019 Nano Lett. 19 2871Google Scholar

    [25]

    Radisic A, Vereecken P M, Hannon J B, Searson P C, Ross F M 2006 Nano Lett. 6 238Google Scholar

    [26]

    Radisic A, Vereecken P M, Searson P C, Ross F M 2006 Surf. Sci. 600 1817Google Scholar

    [27]

    Tan S F, Lin G, Bosman M, Mirsaidov U, Nijhuis C A 2016 ACS Nano 10 7689Google Scholar

    [28]

    Lutz L, Dachraoui W, Demortière A, Johnson L R, Bruce P G, Grimaud A, Tarascon J 2018 Nano Lett. 18 1280Google Scholar

    [29]

    Nagashima S, Ikai T, Sasaki Y, Kawasaki T, Hatanaka T, Kato H, Kishita K 2019 Nano Lett. 19 7000Google Scholar

    [30]

    Liu K L, Wu C C, Huang Y J, Peng H L, Chang H Y, Chang P, Hsu L, Yew T R 2008 Lab Chip 8 1915Google Scholar

    [31]

    Jonge N D, Peckys D B, Kremers G J, Piston D W 2009 Proc. Natl. Acad. Sci. U.S.A. 106 2159Google Scholar

    [32]

    Park J, Park H, Ercius P, Pegoraro A F, Xu C, Kim J W, Han S H, Weitz D A 2015 Nano Lett. 15 4737Google Scholar

    [33]

    Dahmke I N, Verch A, Hermannsdörfer J, Peckys D B, Weatherup R S, Hofmann S, de Jonge N 2017 ACS Nano 11 11108Google Scholar

    [34]

    Gu M, Parent L R, Mehdi B L, Unocic R R, McDowell M T, Sacci R L, Xu W, Connell J G, Xu P, Abellan P, Chen X, Zhang Y, Perea D E, Evans J E, Lauhon L J, Zhang J, Liu J, Browning N D, Cui Y, Arslan I, Wang C 2013 Nano Lett. 13 6106Google Scholar

    [35]

    Mehdi B L, Qian J, Nasybulin E, Park C, Welch D A, Faller R, Mehta H, Henderson W A, Xu W, Wang C M, Evans J E, Liu J, Zhang J G, Mueller K T, Browning N D 2015 Nano Lett. 15 2168Google Scholar

    [36]

    Seo H K, Hwa Y, Chang J H, Park J Y, Lee J S, Park J, Cairns E J, Yuk J M 2020 Nano Lett. 20 2080Google Scholar

    [37]

    Zeng Z, Liang W, Liao H, Xin H L, Chu Y, Zheng H 2014 Nano Lett. 14 1745Google Scholar

    [38]

    Zeng Z, Zhang X, Bustillo K, Niu K, Gammer C, Xu J, Zheng H 2015 Nano Lett. 15 5214Google Scholar

    [39]

    Cheong J Y, Chang J H, Seo H K, Yuk J M, Shin J W, Lee J Y, Kim I 2016 Nano Energy 25 154Google Scholar

    [40]

    Wu J, Gao W, Yang H, Zuo J 2017 ACS Nano 11 1696Google Scholar

    [41]

    Shan H, Gao W, Xiong Y, Shi F, Yan Y, Ma Y, Shang W, Tao P, Song C, Deng T, Zhang H, Yang D, Pan X, Wu J 2018 Nat. Commun. 9 1011Google Scholar

    [42]

    陕皓 2018 博士学位论文 (上海: 交通大学)

    Shan H 2018 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [43]

    Lu Y, Yin W, Peng K, Wang K, Hu Q, Selloni A, Chen F, Liu L, Sui M 2018 Nat. Commun. 9 2752Google Scholar

    [44]

    Kashin A S, Ananikov V P 2019 Nat. Rev. Chem. 3 624Google Scholar

    [45]

    Kröger R, erch A V 2018 Minerals 8 21Google Scholar

    [46]

    Tanase M, Winterstein J, Sharma R, Aksyuk V, Holland G, Liddle J A 2015 Microsc. Microanal. 21 1629

    [47]

    Niels D J, Lothar H, Rafal E D, Frances M R 2019 Nat. Rev. Mater. 4 61Google Scholar

    [48]

    Woehl T J, Evans J E, Arslan I, Ristenpart W D, Browning N D 2012 ACS Nano 6 8599Google Scholar

    [49]

    Sutter E A, Sutter P W 2014 J. Am. Chem. Soc. 136 16865Google Scholar

    [50]

    Ambrožič B, Prašnikar A, Hodnik N, Kostevšek N, Likozar B, Rožman K Ž, Šturm S 2019 Chem. Sci. 10 8735Google Scholar

    [51]

    胡奇, 金传洪 2019 物理化学学报 35 101Google Scholar

    Hu Q, Jin C H 2019 Acta Phys.-Chim. Sin. 35 101Google Scholar

    [52]

    Schneider N M, Norton M M, Mendel B J, Grogan J M, Ross F M, Bau H H 2014 J. Phys. Chem. C 118 22373Google Scholar

    [53]

    Wang C, Shokuhfar T, Klie R F 2016 Adv. Mater. 28 7716Google Scholar

    [54]

    Grogan J M, Schneider N M, Ross F M, Bau H H 2013 Nano Lett. 14 359Google Scholar

    [55]

    Shin D, Park J B, Kim Y, Kim S J, Kang J H, Lee B, Cho S, Hong B H, Novoselov K S 2015 Nat. Commun. 6 6068Google Scholar

    [56]

    Zhu G, Jiang Y, Huang W, Zhang H, Lin F, Jin C 2013 Chem. Commun. 49 10944Google Scholar

    [57]

    Hwang S, Chen X, Zhou G, Su D 2019 Adv. Energy Mater. 10 1902105Google Scholar

    [58]

    Sutter E, Jungjohann K, Bliznakov S, Courty A, Maisonhaute E, Tenney S, Sutter P 2014 Nat. Commun. 5 4946Google Scholar

    [59]

    Cho H, Jones M R, Nguyen S C, Hauwiller M R, Zettl A, Alivisatos A P 2016 Nano Lett. 17 414

    [60]

    Pu S, Gong C, Robertson A W 2020 R. Soc. Open Sci. 7 191204Google Scholar

    [61]

    White E R, Mecklenburg M, Shevitski B, Singer S B, Regan B C 2012 Langmuir 28 3695Google Scholar

    [62]

    Bhuyan M K, Soleilhac A, Somayaji M, Itina T E, Antoine R, Stoian R 2018 Sci. Rep. 8 9665Google Scholar

    [63]

    Fu X, Chen B, Tang J, Hassan M T, Zewail A H 2017 Science 355 494Google Scholar

    [64]

    Fu X, Chen B, Tang J, Zewail A H 2017 Sci. Adv. 3 e1701160Google Scholar

    [65]

    王文, 徐涛, 孙立涛 2018 电子显微学报 37 500Google Scholar

    Wang W, Xu T, Sun L T 2018 J. Chin. Electron Microsc. Soc. 37 500Google Scholar

    [66]

    Yang J, Choi M K, Sheng Y, Jung J, Bustillo K, Chen T, Lee S, Ercius P, Kim J H, Warner J H, Chan E M, Zheng H 2019 Nano Lett. 19 1788Google Scholar

    [67]

    Zhu C, Liang S, Song E, Zhou Y, Wang W, Shan F, Shi Y, Hao C, Yin K, Zhang T, Liu J, Zheng H, Sun L 2018 Nat. Commun. 9 421Google Scholar

    [68]

    Wei W, Zhang H, Wang W, Dong M, Nie M, Sun L, Xu F 2019 ACS Appl. Mater. Inter. 11 24478Google Scholar

    [69]

    Liao H, Cui L, Whitelam S, Zheng H 2012 Science 336 1011Google Scholar

    [70]

    Franks R, Morefield S, Wen J, Liao D, Alvarado J, Strano M, Marsh C 2008 J. Nanosci. Nanotechnol. 8 4404Google Scholar

    [71]

    Grogan J M, Bau H H 2010 J. Microelectromech. Syst. 19 885Google Scholar

    [72]

    Denoual M, Menon V, Sato T, de Sagazan O, Coleman A W, Fujita H 2018 Meas. Sci. Technol. 30 17001Google Scholar

    [73]

    Tai K, Liu Y, Dillon S J 2014 Microsc. Microanal. 20 330Google Scholar

    [74]

    de Jonge N, Ross F M 2011 Nat. Nanotechnol. 6 695Google Scholar

    [75]

    胡奇 2018 硕士学位论文 (杭州: 浙江大学)

    Hu Q 2018 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [76]

    Chen X, Li C, Cao H 2015 Nanoscale 7 4811Google Scholar

    [77]

    Textor M, de Jonge N 2018 Nano Lett. 18 3313Google Scholar

    [78]

    Yang J, Alam S B, Yu L, Chan E, Zheng H 2019 Micron 116 22Google Scholar

    [79]

    Hutzler A, Schmutzler T, Jank M P M, Branscheid R, Unruh T, Spiecker E, Frey L 2018 Nano Lett. 18 7222Google Scholar

    [80]

    Liao H, Zheng H 2016 Annu. Rev. Phys. Chem. 67 719Google Scholar

    [81]

    Maxwell J C 1908 London, Edinburgh Dublin Philos. Mag. J. Sci. 16 818Google Scholar

    [82]

    Nielsen M H, Li D, Zhang H, Aloni S, Han T Y, Frandsen C, Seto J, Banfield J F, Cölfen H, De Yoreo J J 2014 Microsc. Microanal. 20 425Google Scholar

    [83]

    Vekilov P G 2010 Nanoscale 2 2346Google Scholar

    [84]

    付贵珍 2013 山东陶瓷 36 18Google Scholar

    Fu G 2013 Shandong Ceram. 36 18Google Scholar

    [85]

    Loh N D, Sen S, Bosman M, Tan S F, Zhong J, Nijhuis C A, Král P, Matsudaira P, Mirsaidov U 2017 Nat. Chem. 9 77Google Scholar

    [86]

    Voorhees P W 1985 J. Stat. Phys. 38 231Google Scholar

    [87]

    李东祥, 高媛媛, 张晓芳, 夏海兵 2019 化学学报 77 305Google Scholar

    Li D X, Gao Y Y, Zhang X F, Xia H B 2019 Acta Chem. Sin. (Chin. Ed.) 77 305Google Scholar

    [88]

    LaMer V K, Dinegar R H 1950 J. Am. Chem. Soc. 72 4847Google Scholar

    [89]

    Chen Y, Chen J, Wu W 2017 J. Phys. Chem. C 121 26069Google Scholar

    [90]

    Banfield J, Welch S, Zhang H, Ebert T, Penn R 2000 Science 289 751Google Scholar

    [91]

    Liao H, Zheng H 2013 J. Am. Chem. Soc. 135 5038Google Scholar

    [92]

    Jungjohann K L, Bliznakov S, Sutter P W, Stach E A, Sutter E A 2013 Nano Lett. 13 2964Google Scholar

    [93]

    Wu J, Gao W, Wen J, Miller D J, Lu P, Zuo J, Yang H 2015 Nano Lett. 15 2711Google Scholar

    [94]

    Chen F, Chen J, Lin Y, Kuo M, Hsu Y, Wu W 2019 Nanoscale 11 10486Google Scholar

    [95]

    Su T, Wang Z L, Wang Z 2019 Small 15 1900050Google Scholar

    [96]

    Vailonis K M, Gnanasekaran K, Powers X B, Gianneschi N C, Jenkins D M 2019 J. Am. Chem. Soc. 141 10177Google Scholar

    [97]

    Hauwiller M R, Zhang X, Liang W, Chiu C, Zhang Q, Zheng W, Ophus C, Chan E M, Czarnik C, Pan M, Ross F M, Wu W, Chu Y, Asta M, Voorhees P W, Alivisatos A P, Zheng H 2018 Nano Lett. 18 6427Google Scholar

    [98]

    Yang J, Zeng Z, Kang J, Betzler S, Czarnik C, Zhang X, Ophus C, Yu C, Bustillo K, Pan M, Qiu J, Wang L, Zheng H 2019 Nat. Mater. 18 970Google Scholar

    [99]

    Zheng W, Hauwiller M R, Liang W, Ophus C, Ercius P, Chan E M, Chu Y, Asta M, Du X, Alivisatos A P, Zheng H 2019 Nano Res. 12 2889Google Scholar

    [100]

    Parent L R, Robinson D B, Woehl T J, Ristenpart W D, Evans J E, Browning N D, Arslan I 2012 ACS Nano 6 3589Google Scholar

    [101]

    Verch A, Pfaff M, de Jonge N 2015 Langmuir 31 6956Google Scholar

    [102]

    陈新, 李唱, 柯凯 2017 科学通报 62 2886Google Scholar

    Chen X, Li C, Ke K 2017 Sci. Bull. 62 2886Google Scholar

  • 图 1  三类液体环境TEM实现方式示意图 (a)基于差分泵真空系统TEM结构示意图[3]; (b), (c) 基于离子液体构建的液体环境TEM实验装置示意图[4]; (d) 基于液体腔构建的液体环境TEM实验装置示意图; (e), (f)基于微纳加工制备的氮化硅窗口液体腔结构示意图[6,7]; (g), (h)基于石墨烯窗口的液体腔结构示意图[8,9]

    Fig. 1.  Schematic diagrams of three typical methods to observe liquid sample by TEM: (a) Environment TEM based on differential pump system[3]; (b), (c) observation of the ionic liquid sample by TEM[4]; (d) schematic diagram of closed liquid cell for TEM observation; (e), (f) schematic diagrams of the liquid cell with the silicon nitride window[6,7]; (g), (h) schematic diagrams of the liquid cell with the graphene window[8,9].

    图 2  典型的液体腔基本结构示意图

    Fig. 2.  Schematic diagram of the structure of a typical liquid cell.

    图 3  氮化硅窗口液体腔的发展情况

    Fig. 3.  The development of the silicon nitride window liquid cell.

    图 4  典型的TEM 原位液体腔制作工艺步骤示意图 (a) 液体腔的基本结构图, 为方便结构解析, (b), (c) 沿黑色虚线剖面结构; (b) 典型的制作工艺步骤, 通过不同工艺分别制作上下两部分结构, 最后组装成(c)结构; (c) 液体腔的基本结构图剖面图

    Fig. 4.  Typical TEM liquid cell manufacturing process: (a) The structure diagram of the liquid cell, where description (b) and (c) are cross-sectional diagram drawn along the black dash; (b) typical manufacturing process steps, the upper and lower parts are made by different processes structure, finally assembled into (c) the structure of the liquid cell with the cross-sectional view.

    图 5  附加功能的液体腔结构示意图 (a) 附加电极的流动式液体腔结构示意图[6]; (b) 附加加热功能的液体腔结构示意图[72]

    Fig. 5.  Liquid cell with additional functions: (a) Fluidic liquid cell with electrodes[6]; (b) liquid cell with heater[72]

    图 6  典型的石墨烯液体腔制作工艺步骤示意图 (a) 两个石墨烯沉积的TEM网格相互叠加; (b) 滴加溶液并吸去多余的溶液; (c) 少量残留的液体压入微米或纳米级的囊中; (d) 移除上层TEM网格

    Fig. 6.  Typical manufacturing process of the graphene liquid cell: (a) Two graphene deposited TEM grids are superimposed; (b) extra solution is removed by suction after dropping; (c) solution is entrapped between two graphene membranes after drying; (d) top TEM grid is removed.

    图 7  两种典型的石墨烯液体腔结构示意图 (a)石墨烯液体腔结构示意图; (b)硅基-石墨烯液体腔结构示意图

    Fig. 7.  Schematic diagram of two typical graphene liquid cell structures: (a) Graphene liquid cavity structure; (b) silicon-based graphene liquid cavity structure.

    图 8  金纳米颗粒的成核过程的TEM时序图像[82] (a)−(d)金纳米颗粒在溶液中的形核过程; (e)−(n) 选自(a)中黑框区域的成核情况, 圆圈标定的粒子在成核过程中溶解

    Fig. 8.  TEM time series images of the nucleation process of gold nanoparticles[82]: (a)−(d) Nucleation process of gold nanoparticles in solution; (e)−(n) nucleation situation of the black frame area in (a) is selected, where particles demarcated by the circle are dissolved during the nucleation process.

    图 9  金和银在溶液中成核的三步途径[85] (a)金纳米粒子成核的三个阶段演化图像; (b)成核步骤示意图; (c)银纳米粒子成核的三个阶段演化图像

    Fig. 9.  The three-step pathway of gold and silver nucleation in solution[85]: (a) Three-stage evolution image of gold nanoparticle nucleation; (b) schematic diagram of nucleation step; (c) three-stage evolution image of silver nanoparticle nucleation.

    图 10  原位液体电镜下纳米晶的生长过程 (a) Pt 纳米粒子生长的TEM时序图像, 左侧为纳米粒子通过单体生长的过程, 右侧为纳米粒子聚合生长过程[7]; (b) Pt纳米粒子特定晶相的聚合生长过程的TEM时序图像[8]

    Fig. 10.  Growth process of nanocrystals observed by in-situ liquid electron microscope: (a) TEM time series images of Pt nanoparticle growth, the left side is the process of nanoparticle growth through monomer, and the right side is the process of nanoparticle aggregation growth[7]; (b) TEM time series images of the polymerization growth process of the specific crystal phase of Pt nanoparticles[8]

    图 11  纳米晶体在溶液中的定向吸附过程[69] (a) 弛豫阶段纳米晶体的结构变化; (b)不同长度纳米线的矫直过程

    Fig. 11.  The directional adsorption process of nanocrystals in solution[69]: (a) Structural evolution of nanocrystals in the relaxation phase; (b) straightening process of nanowires of different lengths.

    图 12  Pt二十面体上Au的生长[93] (a) TEM时序图像显示了Au在Pt二十面体纳米颗粒上的生长过程, 箭头代表Au的生长变化位置; (b) Pt纳米晶体上Au的成核和生长的定量分析, 方程是考虑了反应和扩散的增长率

    Fig. 12.  Au growth on a Pt icosahedron[93]: (a) TEM sequence image shows the growth process of Au on Pt icosahedral nanoparticles, and the arrow represents the growth and change position of Au; (b) quantitative analysis of Au nucleation and growth on Pt nanocrystals, the equation is to consider the growth rate of reaction and diffusion.

  • [1]

    Abrams I, Mcbain J 1944 Science 100 273Google Scholar

    [2]

    Xu T, Sun L 2016 Superlattice Microstruct. 99 24

    [3]

    Hansen T W, Wagner J B, Dunin-Borkowski R E 2010 Mater. Sci. Technol. 26 1338

    [4]

    Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao S X, Hudak N S, Liu X H, Subramanian A, Fan H, Qi L, Kushima A, Li J 2010 Science 330 1515Google Scholar

    [5]

    Miyata T, Mizoguchi T 2017 Ultramicroscopy 178 81

    [6]

    Tromp R M, Hull R, Vereecken P M, Williamson M J, Ross F M 2003 Nat. Mater. 2 532

    [7]

    Zheng H, Smith R K, Jun Y, Kisielowski C, Dahmen U, Alivisatos A P 2009 Science 324 1306Google Scholar

    [8]

    Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P 2012 Science 336 61Google Scholar

    [9]

    Rasool H, Dunn G, Fathalizadeh A, Zettl A 2016 Phys. Status Solidi B 253 2351Google Scholar

    [10]

    Haider M H M, Rose H R H, Uhlemann S U S, Kabius B K B, Urban K U K 1998 J. Electron. Microsc. 47 395

    [11]

    Liao H G, Zherebetskyy D, Xin H, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L W, Zheng H 2014 Science 345 916Google Scholar

    [12]

    Evans J E, Jungjohann K L, Browning N D, Arslan I 2011 Nano Lett. 11 2809

    [13]

    Park J, Zheng H, Lee W C, Geissler P L, Rabani E, Alivisatos A P 2012 ACS Nano 6 2078

    [14]

    Li D, Nielsen M H, Jonathan R I L, Frandsen C, Banfield J F, James J D Y 2012 Science 336 1014Google Scholar

    [15]

    Zhu G, Jiang Y, Lin F, Zhang H, Jin C, Yuan J, Yang D, Zhang Z 2014 Chem. Commun. 50 9447Google Scholar

    [16]

    Nielsen M H, Aloni S, De Yoreo J J 2014 Science 345 1158Google Scholar

    [17]

    Chen Q, Cho H, Manthiram K, Yoshida M, Ye X, Alivisatos A P 2015 ACS Cent. Sci. 1 33

    [18]

    Liu J, Wang Z, Sheng A, Liu F, Qin F, Wang Z L 2016 Environ. Sci. Technol. 50 5606Google Scholar

    [19]

    Tan S F, Chee S W, Lin G, Bosman M, Lin M, Mirsaidov U, Nijhuis C A 2016 J. Am. Chem. Soc. 138 5190Google Scholar

    [20]

    Dong M, Wang W, Wei W, Hu X, Qin M, Zhang Q, Sun L, Xu F 2019 J. Phys. Chem. C 123 21257Google Scholar

    [21]

    Zheng H, Claridge S A, Minor A M, Alivisatos A P, Dahmen U 2009 Nano Lett. 9 2460Google Scholar

    [22]

    Grogan J M, Rotkina L, Bau H H 2011 Phys. Rev. E: Stat., Nonlin., Soft Matter Phys. 83 61405Google Scholar

    [23]

    Chee S W, Baraissov Z, Loh N D, Matsudaira P T, Mirsaidov U 2016 J. Phys. Chem. C 120 20462Google Scholar

    [24]

    Chee S W, Anand U, Bisht G, Tan S F, Mirsaidov U 2019 Nano Lett. 19 2871Google Scholar

    [25]

    Radisic A, Vereecken P M, Hannon J B, Searson P C, Ross F M 2006 Nano Lett. 6 238Google Scholar

    [26]

    Radisic A, Vereecken P M, Searson P C, Ross F M 2006 Surf. Sci. 600 1817Google Scholar

    [27]

    Tan S F, Lin G, Bosman M, Mirsaidov U, Nijhuis C A 2016 ACS Nano 10 7689Google Scholar

    [28]

    Lutz L, Dachraoui W, Demortière A, Johnson L R, Bruce P G, Grimaud A, Tarascon J 2018 Nano Lett. 18 1280Google Scholar

    [29]

    Nagashima S, Ikai T, Sasaki Y, Kawasaki T, Hatanaka T, Kato H, Kishita K 2019 Nano Lett. 19 7000Google Scholar

    [30]

    Liu K L, Wu C C, Huang Y J, Peng H L, Chang H Y, Chang P, Hsu L, Yew T R 2008 Lab Chip 8 1915Google Scholar

    [31]

    Jonge N D, Peckys D B, Kremers G J, Piston D W 2009 Proc. Natl. Acad. Sci. U.S.A. 106 2159Google Scholar

    [32]

    Park J, Park H, Ercius P, Pegoraro A F, Xu C, Kim J W, Han S H, Weitz D A 2015 Nano Lett. 15 4737Google Scholar

    [33]

    Dahmke I N, Verch A, Hermannsdörfer J, Peckys D B, Weatherup R S, Hofmann S, de Jonge N 2017 ACS Nano 11 11108Google Scholar

    [34]

    Gu M, Parent L R, Mehdi B L, Unocic R R, McDowell M T, Sacci R L, Xu W, Connell J G, Xu P, Abellan P, Chen X, Zhang Y, Perea D E, Evans J E, Lauhon L J, Zhang J, Liu J, Browning N D, Cui Y, Arslan I, Wang C 2013 Nano Lett. 13 6106Google Scholar

    [35]

    Mehdi B L, Qian J, Nasybulin E, Park C, Welch D A, Faller R, Mehta H, Henderson W A, Xu W, Wang C M, Evans J E, Liu J, Zhang J G, Mueller K T, Browning N D 2015 Nano Lett. 15 2168Google Scholar

    [36]

    Seo H K, Hwa Y, Chang J H, Park J Y, Lee J S, Park J, Cairns E J, Yuk J M 2020 Nano Lett. 20 2080Google Scholar

    [37]

    Zeng Z, Liang W, Liao H, Xin H L, Chu Y, Zheng H 2014 Nano Lett. 14 1745Google Scholar

    [38]

    Zeng Z, Zhang X, Bustillo K, Niu K, Gammer C, Xu J, Zheng H 2015 Nano Lett. 15 5214Google Scholar

    [39]

    Cheong J Y, Chang J H, Seo H K, Yuk J M, Shin J W, Lee J Y, Kim I 2016 Nano Energy 25 154Google Scholar

    [40]

    Wu J, Gao W, Yang H, Zuo J 2017 ACS Nano 11 1696Google Scholar

    [41]

    Shan H, Gao W, Xiong Y, Shi F, Yan Y, Ma Y, Shang W, Tao P, Song C, Deng T, Zhang H, Yang D, Pan X, Wu J 2018 Nat. Commun. 9 1011Google Scholar

    [42]

    陕皓 2018 博士学位论文 (上海: 交通大学)

    Shan H 2018 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [43]

    Lu Y, Yin W, Peng K, Wang K, Hu Q, Selloni A, Chen F, Liu L, Sui M 2018 Nat. Commun. 9 2752Google Scholar

    [44]

    Kashin A S, Ananikov V P 2019 Nat. Rev. Chem. 3 624Google Scholar

    [45]

    Kröger R, erch A V 2018 Minerals 8 21Google Scholar

    [46]

    Tanase M, Winterstein J, Sharma R, Aksyuk V, Holland G, Liddle J A 2015 Microsc. Microanal. 21 1629

    [47]

    Niels D J, Lothar H, Rafal E D, Frances M R 2019 Nat. Rev. Mater. 4 61Google Scholar

    [48]

    Woehl T J, Evans J E, Arslan I, Ristenpart W D, Browning N D 2012 ACS Nano 6 8599Google Scholar

    [49]

    Sutter E A, Sutter P W 2014 J. Am. Chem. Soc. 136 16865Google Scholar

    [50]

    Ambrožič B, Prašnikar A, Hodnik N, Kostevšek N, Likozar B, Rožman K Ž, Šturm S 2019 Chem. Sci. 10 8735Google Scholar

    [51]

    胡奇, 金传洪 2019 物理化学学报 35 101Google Scholar

    Hu Q, Jin C H 2019 Acta Phys.-Chim. Sin. 35 101Google Scholar

    [52]

    Schneider N M, Norton M M, Mendel B J, Grogan J M, Ross F M, Bau H H 2014 J. Phys. Chem. C 118 22373Google Scholar

    [53]

    Wang C, Shokuhfar T, Klie R F 2016 Adv. Mater. 28 7716Google Scholar

    [54]

    Grogan J M, Schneider N M, Ross F M, Bau H H 2013 Nano Lett. 14 359Google Scholar

    [55]

    Shin D, Park J B, Kim Y, Kim S J, Kang J H, Lee B, Cho S, Hong B H, Novoselov K S 2015 Nat. Commun. 6 6068Google Scholar

    [56]

    Zhu G, Jiang Y, Huang W, Zhang H, Lin F, Jin C 2013 Chem. Commun. 49 10944Google Scholar

    [57]

    Hwang S, Chen X, Zhou G, Su D 2019 Adv. Energy Mater. 10 1902105Google Scholar

    [58]

    Sutter E, Jungjohann K, Bliznakov S, Courty A, Maisonhaute E, Tenney S, Sutter P 2014 Nat. Commun. 5 4946Google Scholar

    [59]

    Cho H, Jones M R, Nguyen S C, Hauwiller M R, Zettl A, Alivisatos A P 2016 Nano Lett. 17 414

    [60]

    Pu S, Gong C, Robertson A W 2020 R. Soc. Open Sci. 7 191204Google Scholar

    [61]

    White E R, Mecklenburg M, Shevitski B, Singer S B, Regan B C 2012 Langmuir 28 3695Google Scholar

    [62]

    Bhuyan M K, Soleilhac A, Somayaji M, Itina T E, Antoine R, Stoian R 2018 Sci. Rep. 8 9665Google Scholar

    [63]

    Fu X, Chen B, Tang J, Hassan M T, Zewail A H 2017 Science 355 494Google Scholar

    [64]

    Fu X, Chen B, Tang J, Zewail A H 2017 Sci. Adv. 3 e1701160Google Scholar

    [65]

    王文, 徐涛, 孙立涛 2018 电子显微学报 37 500Google Scholar

    Wang W, Xu T, Sun L T 2018 J. Chin. Electron Microsc. Soc. 37 500Google Scholar

    [66]

    Yang J, Choi M K, Sheng Y, Jung J, Bustillo K, Chen T, Lee S, Ercius P, Kim J H, Warner J H, Chan E M, Zheng H 2019 Nano Lett. 19 1788Google Scholar

    [67]

    Zhu C, Liang S, Song E, Zhou Y, Wang W, Shan F, Shi Y, Hao C, Yin K, Zhang T, Liu J, Zheng H, Sun L 2018 Nat. Commun. 9 421Google Scholar

    [68]

    Wei W, Zhang H, Wang W, Dong M, Nie M, Sun L, Xu F 2019 ACS Appl. Mater. Inter. 11 24478Google Scholar

    [69]

    Liao H, Cui L, Whitelam S, Zheng H 2012 Science 336 1011Google Scholar

    [70]

    Franks R, Morefield S, Wen J, Liao D, Alvarado J, Strano M, Marsh C 2008 J. Nanosci. Nanotechnol. 8 4404Google Scholar

    [71]

    Grogan J M, Bau H H 2010 J. Microelectromech. Syst. 19 885Google Scholar

    [72]

    Denoual M, Menon V, Sato T, de Sagazan O, Coleman A W, Fujita H 2018 Meas. Sci. Technol. 30 17001Google Scholar

    [73]

    Tai K, Liu Y, Dillon S J 2014 Microsc. Microanal. 20 330Google Scholar

    [74]

    de Jonge N, Ross F M 2011 Nat. Nanotechnol. 6 695Google Scholar

    [75]

    胡奇 2018 硕士学位论文 (杭州: 浙江大学)

    Hu Q 2018 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [76]

    Chen X, Li C, Cao H 2015 Nanoscale 7 4811Google Scholar

    [77]

    Textor M, de Jonge N 2018 Nano Lett. 18 3313Google Scholar

    [78]

    Yang J, Alam S B, Yu L, Chan E, Zheng H 2019 Micron 116 22Google Scholar

    [79]

    Hutzler A, Schmutzler T, Jank M P M, Branscheid R, Unruh T, Spiecker E, Frey L 2018 Nano Lett. 18 7222Google Scholar

    [80]

    Liao H, Zheng H 2016 Annu. Rev. Phys. Chem. 67 719Google Scholar

    [81]

    Maxwell J C 1908 London, Edinburgh Dublin Philos. Mag. J. Sci. 16 818Google Scholar

    [82]

    Nielsen M H, Li D, Zhang H, Aloni S, Han T Y, Frandsen C, Seto J, Banfield J F, Cölfen H, De Yoreo J J 2014 Microsc. Microanal. 20 425Google Scholar

    [83]

    Vekilov P G 2010 Nanoscale 2 2346Google Scholar

    [84]

    付贵珍 2013 山东陶瓷 36 18Google Scholar

    Fu G 2013 Shandong Ceram. 36 18Google Scholar

    [85]

    Loh N D, Sen S, Bosman M, Tan S F, Zhong J, Nijhuis C A, Král P, Matsudaira P, Mirsaidov U 2017 Nat. Chem. 9 77Google Scholar

    [86]

    Voorhees P W 1985 J. Stat. Phys. 38 231Google Scholar

    [87]

    李东祥, 高媛媛, 张晓芳, 夏海兵 2019 化学学报 77 305Google Scholar

    Li D X, Gao Y Y, Zhang X F, Xia H B 2019 Acta Chem. Sin. (Chin. Ed.) 77 305Google Scholar

    [88]

    LaMer V K, Dinegar R H 1950 J. Am. Chem. Soc. 72 4847Google Scholar

    [89]

    Chen Y, Chen J, Wu W 2017 J. Phys. Chem. C 121 26069Google Scholar

    [90]

    Banfield J, Welch S, Zhang H, Ebert T, Penn R 2000 Science 289 751Google Scholar

    [91]

    Liao H, Zheng H 2013 J. Am. Chem. Soc. 135 5038Google Scholar

    [92]

    Jungjohann K L, Bliznakov S, Sutter P W, Stach E A, Sutter E A 2013 Nano Lett. 13 2964Google Scholar

    [93]

    Wu J, Gao W, Wen J, Miller D J, Lu P, Zuo J, Yang H 2015 Nano Lett. 15 2711Google Scholar

    [94]

    Chen F, Chen J, Lin Y, Kuo M, Hsu Y, Wu W 2019 Nanoscale 11 10486Google Scholar

    [95]

    Su T, Wang Z L, Wang Z 2019 Small 15 1900050Google Scholar

    [96]

    Vailonis K M, Gnanasekaran K, Powers X B, Gianneschi N C, Jenkins D M 2019 J. Am. Chem. Soc. 141 10177Google Scholar

    [97]

    Hauwiller M R, Zhang X, Liang W, Chiu C, Zhang Q, Zheng W, Ophus C, Chan E M, Czarnik C, Pan M, Ross F M, Wu W, Chu Y, Asta M, Voorhees P W, Alivisatos A P, Zheng H 2018 Nano Lett. 18 6427Google Scholar

    [98]

    Yang J, Zeng Z, Kang J, Betzler S, Czarnik C, Zhang X, Ophus C, Yu C, Bustillo K, Pan M, Qiu J, Wang L, Zheng H 2019 Nat. Mater. 18 970Google Scholar

    [99]

    Zheng W, Hauwiller M R, Liang W, Ophus C, Ercius P, Chan E M, Chu Y, Asta M, Du X, Alivisatos A P, Zheng H 2019 Nano Res. 12 2889Google Scholar

    [100]

    Parent L R, Robinson D B, Woehl T J, Ristenpart W D, Evans J E, Browning N D, Arslan I 2012 ACS Nano 6 3589Google Scholar

    [101]

    Verch A, Pfaff M, de Jonge N 2015 Langmuir 31 6956Google Scholar

    [102]

    陈新, 李唱, 柯凯 2017 科学通报 62 2886Google Scholar

    Chen X, Li C, Ke K 2017 Sci. Bull. 62 2886Google Scholar

  • [1] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征. 物理学报, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [2] 陆敬予, 柯承志, 龚正良, 李德平, 慈立杰, 张力, 张桥保. 原位表征技术在全固态锂电池中的应用. 物理学报, 2021, 70(19): 198102. doi: 10.7498/aps.70.20210531
    [3] 熊雨薇, 尹奎波, 文一峰, 辛磊, 姚利兵, 朱重阳, 孙立涛. 纳米氧化锡负极材料锂化反应机理的原位透射电镜研究. 物理学报, 2019, 68(15): 158201. doi: 10.7498/aps.68.20190431
    [4] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究. 物理学报, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [5] 杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男. 基于扫描电子显微镜的碳纳米管拾取操作方法研究. 物理学报, 2018, 67(13): 136801. doi: 10.7498/aps.67.20180347
    [6] 任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东. 深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用. 物理学报, 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [7] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [8] 张超, 方粮, 隋兵才, 徐强, 王慧. 基于微芯片的透射电子显微镜的低温纳米精度电子束刻蚀与原位电学输运性质测量. 物理学报, 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [9] 王震遐, 阮美玲, 杨锦晴, 王玟珉, 俞国庆. 一些新颖碳纳米结构的高分辨率透射电子显微镜研究. 物理学报, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [10] 阙文修, 姚熹. 镁离子内扩散铌酸锂研究(Ⅱ)—— X射线衍射和扫描电子显微镜表征. 物理学报, 1995, 44(4): 614-621. doi: 10.7498/aps.44.614
    [11] 李贻杰, 熊光成, 甘子钊, 任琮欣, 邹世昌. Ar离子注入YBa2Cu3O7-x超导薄膜中微结构变化的透射电子显微镜研究. 物理学报, 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [12] 李龙, 李方华, 杨大宇, 田静华, 林振金. Ce1+εFe4B4合金一维无公度调制结构的透射电子显微镜研究. 物理学报, 1990, 39(5): 788-792. doi: 10.7498/aps.39.788
    [13] 黑祖昆, 郭永翔. Ni-Zr非晶合金晶化过程的透射电子显微镜研究(Ⅱ)——Ni67Zr33非晶合金晶化过程中出现的过渡区. 物理学报, 1989, 38(12): 2034-2038. doi: 10.7498/aps.38.2034
    [14] 徐惠芳, 罗谷风, 胡梅生, 陈峻. 超晶格正长石的高分辨透射电子显微镜研究. 物理学报, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [15] 郭永翔, 黑祖昆, 吴玉琨, 郭可信. Ni-Zr非晶合金晶化的透射电子显微镜研究(Ⅰ) ——Ni67Zr33晶化过程中的亚稳相. 物理学报, 1986, 35(3): 359-364. doi: 10.7498/aps.35.359
    [16] 张京, 刘安生, 吴自勤, 郭可信. Pd-Si薄膜固相反应的透射电子显微镜研究. 物理学报, 1986, 35(7): 965-968. doi: 10.7498/aps.35.965
    [17] 孔庆平, 王翔, 倪群慧. 一种镍基合金高温蠕变过程的电子显微镜透射观察. 物理学报, 1985, 34(7): 973-977. doi: 10.7498/aps.34.973
    [18] 李方华, 樊汉节, 杨大宇, 傅平秋, 孔祐华. 黄河矿的电子显微镜研究. 物理学报, 1982, 31(5): 571-576. doi: 10.7498/aps.31.571
    [19] 程鹏翥, 马晓华, 罗棨光, 杨大宇. 透射电子显微镜样品的电解抛光制备方法. 物理学报, 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [20] 郭可信, 林保军. 镍铬合金中不全位错的透射电子显微镜观察. 物理学报, 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
计量
  • 文章访问数:  9456
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-11
  • 修回日期:  2020-12-09
  • 上网日期:  2020-12-23
  • 刊出日期:  2021-04-20

/

返回文章
返回