搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属卤化物钙钛矿纳米光电材料的研究进展

石文奇 田宏 陆玉新 朱虹 李芬 王小霞 刘燕文

引用本文:
Citation:

金属卤化物钙钛矿纳米光电材料的研究进展

石文奇, 田宏, 陆玉新, 朱虹, 李芬, 王小霞, 刘燕文

Research progress of metal halide perovskite nanometer optoelectronic materials

Shi Wen-Qi, Tian Hong, Lu Yu-Xin, Zhu Hong, Li Fen, Wang Xiao-Xia, Liu Yan-Wen
PDF
HTML
导出引用
  • 金属卤化物钙钛矿广泛应用于太阳能电池、发光二极管和纳米激光器等领域, 引起了科学家们极大的兴趣. 纳米材料由于具有量子约束和较强的各项异性, 表现出与普通块体材料不同的光学和电学性质. 金属卤化物钙钛矿纳米材料具有可调节带隙、高量子效率、强的光致发光、量子约束效应和长的载流子寿命等优点, 并且其成本低、储量丰富、易于合成多种化合物, 有很广阔的光电应用前景. 但另一方面, 钙钛矿由于表面存在陷阱缺陷状态以及晶体边界导致稳定性较差, 环境中的水、氧气、紫外线和温度等因素会使其光电性能大幅度降低. 本文介绍量子点、纳米线、纳米片钙钛矿纳米材料的合成与生长机制, 并且讨论其新奇的光电性能及在各种光电设备中的应用. 最后总结了钙钛矿材料新出现的挑战并讨论了下一代金属卤化物钙钛矿光电设备应用.
    Metal halide perovskites, which have aroused the enormous interest from scientists recently, are widely used in a variety of areas such as solar cells, light emitting diodes (LED) and lasers. Nanomaterials exhibit distinguished optical and electrical properties because of their quantum confinement as well as strong anisotropy. The metal halide perovskite nanomaterials have the advantages of adjustable band gap, high quantum efficiency, strong photoluminescence, quantum confinement and long carrier-lifetime. Besides, as a result of the low-cost fabrication and the sufficient raw material reserve, they have a broad prospect in photoelectric applications. But on the other hand, the poor stability of metal halide perovskites, due to the defect trap states and grain boundaries on the surface, cast a shadow towards their practical applications. The moisture, oxygen and ultraviolet of the environment will degrade their photoelectric performances significantly. In this review, we introduce the synthesis and growth mechanism of metal perovskite nanomaterial quantum dots, nanowires and nanoplatelets, and present their novel photoelectric properties and applications in various photoelectric devices. Finally we summarize the emerging challenges and discuss the next-generation photoelectric applications.
      通信作者: 刘燕文, shiwenqi96@163.com
    • 基金项目: 国家自然科学基金(批准号: 61771454)资助的课题
      Corresponding author: Liu Yan-Wen, shiwenqi96@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771454)
    [1]

    Alivisatos A P 1996 Science 271 933Google Scholar

    [2]

    Vossmeyer T, Katsikas L, Giersig M, Popovic I, Diesner K, Chemseddine A, Eychmüller A, Weller H 1994 J. Phys. Chem. 98 7665Google Scholar

    [3]

    Brock S L 2004 J. Am. Chem. Soc. 126 14679

    [4]

    Aseev P, Fursina A, Boekhout F, Krizek F, Sestoft J E, Borsoi F, Heedt S, Wang G, Binci L, Martí S 2018 Nano Lett. 19 218

    [5]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897Google Scholar

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666Google Scholar

    [7]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [8]

    Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State Mater. Sci. 35 52Google Scholar

    [9]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 605

    [10]

    Li X, Bi D, Yi C, Décoppet J D, Luo J, Zakeeruddin S M, Hagfeldt A, Grätzel M 2016 Science 353 58Google Scholar

    [11]

    Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S 2016 Nature 536 312Google Scholar

    [12]

    Burschka J, Pellet N, Moon S J, Humphry B R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [13]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T 2014 Nat. Mater. 13 476Google Scholar

    [14]

    Zhang Q, Ha S T, Liu X, Sum T C, Xiong Q 2014 Nano Lett. 14 5995Google Scholar

    [15]

    Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S, Zhu X 2015 Nat. Mater. 14 636Google Scholar

    [16]

    Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y 2016 Nat. Nanotechnol. 11 872Google Scholar

    [17]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D 2014 Bright Nat. Nanotechnol. 9 687Google Scholar

    [18]

    Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C 2018 Nature 562 245Google Scholar

    [19]

    Ha S T, Shen C, Zhang J, Xiong Q 2016 Nat. Photonics 10 115Google Scholar

    [20]

    Kim H G, Hwang D W, Kim Y G, Lee J 1999 Chem. Commun. 12 1077

    [21]

    Luo J, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Grätzel M 2014 Science 345 1593Google Scholar

    [22]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H 2013 Science 342 341Google Scholar

    [23]

    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K 2015 Science 347 519Google Scholar

    [24]

    Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T 2015 Science 349 1518Google Scholar

    [25]

    Im J H, Luo J, Franckevičius M, Pellet N, Gao P, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M, Park N G 2015 Nano Lett. 15 2120Google Scholar

    [26]

    Kojima A, Ikegami M, Teshima K, Miyasaka T 2012 Chem. Lett. 41 397Google Scholar

    [27]

    Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585Google Scholar

    [28]

    Schmidt L C, Pertegás A, González C S, Malinkiewicz O, Agouram S, Minguez Espallargas G, Bolink H J, Galian R E, Pérez P J 2014 J. Am. Chem. Soc. 136 850Google Scholar

    [29]

    Muthu C, Nagamma S R, Nair V C 2014 RSC Adv. 4 55908Google Scholar

    [30]

    Gonzalez C S, Galian R E, Pérez P J 2015 J. Mater. Chem. A 3 9187Google Scholar

    [31]

    Huang H, Susha A S, Kershaw S V, Hung T F, Rogach A 2015 Adv. Sci. 2 1500194Google Scholar

    [32]

    Zhang F, Zhong H, Chen C, Wu X, Hu X, Huang H, Han J, Zou B, Dong Y 2015 ACS Nano 9 4533Google Scholar

    [33]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S 2014 Nat. Mater. 13 897Google Scholar

    [34]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M 2015 Nano Lett. 15 3692Google Scholar

    [35]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M 2015 Nano Lett. 15 5635Google Scholar

    [36]

    Akkerman Q A, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L 2015 J. Am. Chem. Soc. 137 10276Google Scholar

    [37]

    Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A 2015 Angew. Chem. 127 15644Google Scholar

    [38]

    Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J 2016 Science 354 92Google Scholar

    [39]

    Yang G, Fan Q, Chen B, Zhou Q, Zhong H 2016 J. Mater. Chem. C 4 11387Google Scholar

    [40]

    de Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [41]

    Duan J, Wang Y, Yang X, Tang Q 2020 Angew. Chem. Int. Ed. 59 4391Google Scholar

    [42]

    Zhao Q, Hazarika A, Chen X, Harvey S P, Larson B W, Teeter G R, Liu J, Song T, Xiao C, Shaw L 2019 Nat. Commun. 10 1Google Scholar

    [43]

    Ling X, Zhou S, Yuan J, Shi J, Qian Y, Larson B W, Zhao Q, Qin C, Li F, Shi G 2019 Adv. Energy Mater. 9 1900721Google Scholar

    [44]

    Waleed A, Tavakoli M M, Gu L, Hussain S, Zhang D, Poddar S, Wang Z, Zhang R, Fan Z 2017 Nano Lett. 17 4951Google Scholar

    [45]

    Tavakoli M M, Waleed A, Gu L, Zhang D, Tavakoli R, Lei B, Su W, Fang F, Fan Z 2017 Nanoscale 9 5828Google Scholar

    [46]

    Zhang D, Eaton S W, Yu Y, Dou L, Yang P 2015 J. Am. Chem. Soc. 137 9230Google Scholar

    [47]

    Shoaib M, Zhang X, Wang X, Zhou H, Xu T, Wang X, Hu X, Liu H, Fan X, Zheng W 2017 J. Am. Chem. Soc. 139 15592Google Scholar

    [48]

    Eaton S W, Lai M, Gibson N A, Wong A B, Dou L, Ma J, Wang L W, Leone S R, Yang P 2016 PNAS 113 1993Google Scholar

    [49]

    Ha S T, Su R, Xing J, Zhang Q, Xiong Q 2017 Chem. Sci. 8 2522Google Scholar

    [50]

    Wang M, Tian W, Cao F, Wang M, Li L 2020 Adv. Funct. Mater. 30 1909771Google Scholar

    [51]

    Tong G, Jiang M, Son D Y, Qiu L, Liu Z, Ono L K, Qi Y 2020 ACS Appl. Mater. Interfaces 12 14185Google Scholar

    [52]

    Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 PNAS 102 10451Google Scholar

    [53]

    Dou L 2017 J. Mater. Chem. C 5 11165Google Scholar

    [54]

    Jagielski J, Kumar S, Yu W Y, Shih C J 2017 J. Mater. Chem. C 5 5610Google Scholar

    [55]

    Ha S T, Liu X, Zhang Q, Giovanni D, Sum T C, Xiong Q 2014 Adv. Opt. Mater. 2 838Google Scholar

    [56]

    Green M A, Ho B A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [57]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [58]

    Li W, Wang Z, Deschler F, Gao S, Friend R H, Cheetham A K 2017 Nat. Rev. Mater. 2 16099Google Scholar

    [59]

    Mitzi D B, Prikas M T, Chondroudis K 1999 Chem. Mat. 11 542Google Scholar

    [60]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [61]

    Bekenstein Y, Koscher B A, Eaton S W, Yang P, Alivisatos A 2015 J. Am. Chem. Soc. 137 16008Google Scholar

    [62]

    Chen J, Gan L, Zhuge F, Li H, Song J, Zeng H, Zhai T A 2017 Angew. Chem. 129 2430Google Scholar

    [63]

    Wang Y, Shi Y, Xin G, Lian J, Shi J 2015 Cryst. Growth Des. 15 4741Google Scholar

    [64]

    Niu L, Liu X, Cong C, Wu C, Wu D, Chang T R, Wang H, Zeng Q, Zhou J, Wang X 2015 Adv. Mater. 27 7800Google Scholar

    [65]

    Zallen R, Slade M L 1975 Solid State Commun. 17 1561Google Scholar

    [66]

    Liu Z, Li Y, Guan X, Al H A, Ha S T, Chiu M H, Ma C, Amer M R, Li L J 2019 J. Phys. Chem. Lett. 10 2363Google Scholar

    [67]

    Liu J, Leng J, Wu K, Zhang J, Jin S 2017 J. Am. Chem. Soc. 139 1432Google Scholar

    [68]

    Cheng H C, Wang G, Li D, He Q, Yin A, Liu Y, Wu H, Ding M, Huang Y, Duan X 2016 Nano Lett. 16 367Google Scholar

    [69]

    Niu W, Eiden A, Vijaya Prakash G, Baumberg J 2014 Appl. Phys. Lett. 104 171111Google Scholar

    [70]

    Yaffe O, Chernikov A, Norman Z M, Zhong Y, Velauthapillai A, van der Zande A, Owen J S, Heinz T 2015 Phys. Rev. B 92 045414Google Scholar

    [71]

    Dang Z, Dhanabalan B, Castelli A, Dhall R, Bustillo K C, Marchelli D, Spirito D, Petralanda U, Shamsi J, Manna L 2020 Nano Lett. 20 1808Google Scholar

    [72]

    Dong H, Zhang C, Liu X, Yao J, Zhao S 2020 Chem. Soc. Rev. 49 951Google Scholar

    [73]

    Bade S G R, Li J, Shan X, Ling Y, Tian Y, Dilbeck T, Besara T, Geske T, Gao H, Ma B 2016 ACS Nano 10 1795Google Scholar

    [74]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S 2016 Adv. Mater. 28 6804Google Scholar

    [75]

    Yantara N, Bhaumik S, Yan F, et al. 2015 J. Phys. Chem. Lett. 6 4360Google Scholar

    [76]

    Wu K, Liang G, Shang Q, Ren Y, Kong D, Lian T 2015 J. Am. Chem. Soc. 137 12792Google Scholar

    [77]

    Wang D, Wright M, Elumalai N K, Uddin 2016 Sol. Energy Mater. Sol. Cells 147 255Google Scholar

    [78]

    Bella F, Griffini G, Correa B J P, Saracco G, Grätzel M, Hagfeldt A, Turri S, Gerbaldi C 2016 Science 354 203Google Scholar

    [79]

    Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H, Grätzel M 2015 Nat. Chem. 7 703Google Scholar

    [80]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q 2016 Nat. Nanotechnol. 11 75Google Scholar

    [81]

    Fu Y, Zhu H, Stoumpos C C, Ding Q, Wang J, Kanatzidis M G, Zhu X, Jin S 2016 ACS Nano 10 7963Google Scholar

    [82]

    Liu P, He X, Ren J, Liao Q, Yao J, Fu H 2017 ACS Nano 11 5766Google Scholar

    [83]

    Stylianakis M M, Maksudov T, Panagiotopoulos A, Kakavelakis G, Petridis K 2019 Materials 12 859Google Scholar

    [84]

    Evans T J S, Schlaus A, Fu Y, Zhong X, Atallah T L, Spencer L E B, Jin S, Zhu X Y 2018 Adv. Opt. Mater. 6 1700982Google Scholar

    [85]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [86]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J 2014 Science 345 542Google Scholar

    [87]

    Wu T, Li J, Zou Y, Xu H, Wen K, Wan S, Bai S, Song T, McLeod J A, Duhm S 2020 Angew. Chem. Int. Ed. 59 4099Google Scholar

    [88]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y, Ohisa S, Kido J 2018 Nat. Photonics 12 681Google Scholar

    [89]

    Weber D 1978 Z. Naturforsch, . B: Chem. Sci. 33 1443Google Scholar

    [90]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [91]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry B R, Yum J H, Moser J 2012 Sci. Rep. 2 1

    [92]

    Bi D, Yi C, Luo J, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 1

    [93]

    Yoo J J, Wieghold S, Sponseller M C, et al. 2019 Energy Environ. Sci. 12 2192Google Scholar

    [94]

    Mahapatra A, Prochowicz D, Tavakoli M M, Trivedi S, Kumar P, Yadav P 2020 J. Mater. Chem. A 8 27Google Scholar

    [95]

    Feng J, Zhu X, Yang Z, Zhang X, Niu J, Wang Z, Zou S, Priya S, Liu S, Yang D 2018 Adv. Mater. 30 1801418Google Scholar

    [96]

    Chen H, Yang S 2019 J. Mater. Chem. A 7 15476Google Scholar

    [97]

    Chin X Y, Cortecchia D, Yin J, Bruno A, Soci C 2015 Nat. Commun. 6 7383Google Scholar

    [98]

    Li C, Han C, Zhang Y, Zang Z, Wang M, Tang X, Du J 2017 Sol. Energy Mater. Sol. Cells 172 341Google Scholar

    [99]

    Park Y J, Kim M, Song A, Kim J Y, Chung K B, Walker B, Seo J H, Wang D H 2020 ACS Appl. Mater. Interfaces 12 35175Google Scholar

  • 图 1  (a) 2009年, 使用CH3NH3PbBr3/TiO2 (实线)和CH3NH3PbI3/TiO2 (虚线)的光电化学电池的入射光子到电流的量子效率(IPCE)作用谱[9]; (b) 2009年, 使用CH3NH3PbBr3/TiO2 (实线)和CH3NH3PbI3/TiO2 (虚线)的电池在100 mW·cm–2, AM 1.5 G辐射下的光电流-电压特性[9]; (c) 2012年, 分别由质量百分比为1%和10%的前驱体溶液于氧化铝介孔薄膜上制备的CH3NH3PbBr3量子点的反射光谱[26]

    Fig. 1.  (a) The quantum efficiency (IPCE) action spectrum of incident photon to current of a photochemical cell using CH3NH3PbBr3/TiO2 (solid line) and CH3NH3PbI3/TiO2 (dashed line) in 2009[9]; (b) photocurrent-voltage characteristics of CH3NH3PbBr3/TiO2 (solid line) and CH3NH3PbI3/TiO2 (dotted line) under radiation of 100 mW·cm–2 and AM 1.5 in 2009[9]; (c) in 2012, the reflection spectra of CH3NH3PbBr3 quantum dots on alumina mesoporous films were prepared from precursor solutions with the weight present of 1% and 10%[26].

    图 2  钙钛矿纳米颗粒的HRTEM图像(尺寸为2 nm)和MX6八面体阵列示意图[28]

    Fig. 2.  HRTEM images of perovskite nanoparticles (size 2 nm) and MX6 octahedral array diagram[28].

    图 3  钙钛矿纳米粒子在(a)甲苯中紫外-可见吸收光谱和(b)室温下荧光光谱 (a)环境光照射; (b)以365 nm为中心的紫外光照射[28]

    Fig. 3.  (a) UV-visible absorption spectra in toluene and (b) fluorescence spectrum at room temperature of perovskite nanoparticles: (a) Environmental light irradiation; (b) ultraviolet light irradiation centered at 365 nm[28].

    图 4  (a)紫外灯激发下(λ = 365 nm)在甲苯中的胶体溶液照片; (b)在所示波长范围内的PL光谱可调性; (c)在不同的沉淀温度下合成的三个样品的光吸收光谱和各自的PL光谱[31]

    Fig. 4.  (a) A colloidal solution of toluene under UV lamp excitation (λ = 365 nm); (b) the spectral tunability of PL within the wavelength range shown; (c) light absorption spectra and respective PL spectra of the three samples synthesized at different precipitation temperatures[31].

    图 5  (a) LARP技术的反应系统和过程示意图; (b)前体溶液中起始原料示意图; (c) CH3NH3PbBr3胶体溶液典型光学图像[32]

    Fig. 5.  (a) Schematic diagram of reaction systems and processes for LARP technology; (b) schematic diagram of the starting material in the precursor solution; (c) typical optical images of CH3NH3PbBr3 colloid solution[32].

    图 6  用不同质量氯化物(a)和碘化物(b)处理后的10 nm CsPbX3 NC透射电子显微镜(TEM)图像[35]

    Fig. 6.  Transmission electron microscope (TEM) images of 10 nm CsPbX3 NC treated with different masses of chloride (a) and iodide (b)[35].

    图 7  (a)含Pb钙钛矿纳米线在阳极氧化铝薄膜上不同反应时间的生长情况侧视SEM图像, 其中 (a1) 0 min, (a2) 20 min, (a3) 40 min, (a4) 80 min; (b)含Pb和(c)含Sn钙钛矿纳米线在阳极氧化铝薄膜上生长俯视SEM图像[45]

    Fig. 7.  (a) The sideview SEM images of Pb perovskite nanowires on anodic alumina film for different growth time, in which (a1) 0 min, (a2) 20 min, (a3) 40 min and (a4) 80 min; the overlook SEM images of Pb containing (b) and (c) Sn containing perovskite nanowires on the anodic alumina film[45].

    图 8  (a) CH3NH3PbI3纳米结构SEM图[15]; (b) 三种卤化物钙钛矿纳米线的XRD图谱[15]

    Fig. 8.  (a) SEM diagram of CH3NH3PbI3 nanostructure[15]; (b) XRD pattern of the three halide perovskite nanowires[15].

    图 9  单晶CsPbBr3纳米线的结构表征 (a) 由PbI2在8 mg/mL CsBr的乙醇溶液中于50 ℃加热12 h得到的CsPbBr3纳米线和纳米片的SEM图像, 比例尺为10 μm; (b) CsPbBr3 (黑色)的XRD图样, 立方(红色)和正交晶(蓝色) CsPbBr3的标准XRD图谱[48]

    Fig. 9.  Structural characterization of single crystal CsPbBr3 nanowires: (a) SEM images of CsPbBr3 nanowires and nanoplatelets with a scale of 10 μm obtained by heating PbI2 in $8 \; {\rm{m}}{\rm{g}}/{\rm{m}}{\rm{L}} $ CsBr ethanol solution at 50 ℃ for 12 h; (b) XRD pattern of CsPbBr3 (black), standard XRD pattern of cubic (red) and orthorhombic (blue) CsPbBr3[48].

    图 10  CsPbBr3胶体合成中反应温度影响的研究 (a)在150 ℃, 形成绿色发射的8—10 nm纳米立方体; (b)在130 ℃下, 形成了侧面尺寸为20 nm, 厚度为几个单位晶胞(约3 nm)的蓝绿色发射纳米片; (c)在90 ℃下, 观察到了呈蓝色发光的纳米片以及数百纳米的层状[61]

    Fig. 10.  Study on the influence of reaction temperature in the synthesis of CsPbBr3 colloid: (a) Formation of green-emitting 8–10 nm nanoplatelet at 150 ℃; (b) at 130 ℃, a blue-green emitting nanoplatelet with a side size of 20 nm and a thickness of several unit cells (about 3 nm) was formed; (c) at 90 ℃, blue-emitting nanoplatelet and layers of several hundred nanometers were observed[61].

    图 11  CH3NH3PbI3分别在(a) 石墨烯, (b)MoS2, (c) h-BN基底上生长的光学图像; (d), (e), (f)分别为对应(a), (b), (c)的拉曼光谱图像[64]

    Fig. 11.  CH3NH3PbI3 grows on (a) graphene, (b) MoS2, (c) h-BN substrate; (d), (e), (f) Raman spectral images corresponding to (a), (b), and (c)[64].

    图 12  (a) 卤化物纳米片与甲基卤化铵进行插层示意图; (b) 卤化物晶体转化为卤化物钙钛矿前后厚度对比图; (c)各种卤化物钙钛矿的光学性质[55]

    Fig. 12.  (a) Schematic diagram of intercalation between halide nanosheet and methyl ammonium halide; (b) comparison of the thickness of halide crystals before and after conversion to halide perovskite; (c) optical properties of various halide perovskites[55].

    图 13  (a)几个单层的AFM图像, 厚度约为1.6 nm; (b)双层的AFM图像, 厚度约为3.4 nm[24]

    Fig. 13.  (a) The AFM image of several monolayers, with a thickness of about 1.6 nm; (b) AFM image of double layers with a thickness of 3.4 nm[24].

    图 14  (a)机械剥落法制备的(C4H9NH3)2PbI4光学图像[70]; (b) Si/SiO2上(C4H9NH3)2 PbBr4 二维晶体的暗场光学图像; (c) (C4H9NH3)2PbBr4 的二维TEM图像晶体[24]

    Fig. 14.  (a) Mechanical spalling method for the preparation of (C4H9NH3)2PbI4 optical images[70]; (b) dark field optical image of two-dimensional (C4H9NH3)2PbBr4 crystal on Si/SiO2; (c) TEM image crystal of two-dimensional(C4H9NH3)2PbBr4[24].

    图 15  (a)钙钛矿太阳能电池结构的示意图, 其中光滑而致密的钙钛矿覆盖层完全覆盖了介孔TiO2层(mp-TiO2)的顶部[79]; (b)整体设备结构: 玻璃/铟锡氧化物/NiOx/钙钛矿/ZnO/Al[80]

    Fig. 15.  (a) Schematic diagram of perovskite solar cell structure, in which the smooth and dense perovskite covering layer completely covers the top of mesoporous TiO2 layer (MP-TiO2); (b) overall equipment structure of glass/indium tin oxide /NiOx/ perovskite/ZnO/Al[80].

  • [1]

    Alivisatos A P 1996 Science 271 933Google Scholar

    [2]

    Vossmeyer T, Katsikas L, Giersig M, Popovic I, Diesner K, Chemseddine A, Eychmüller A, Weller H 1994 J. Phys. Chem. 98 7665Google Scholar

    [3]

    Brock S L 2004 J. Am. Chem. Soc. 126 14679

    [4]

    Aseev P, Fursina A, Boekhout F, Krizek F, Sestoft J E, Borsoi F, Heedt S, Wang G, Binci L, Martí S 2018 Nano Lett. 19 218

    [5]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897Google Scholar

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666Google Scholar

    [7]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [8]

    Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State Mater. Sci. 35 52Google Scholar

    [9]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 605

    [10]

    Li X, Bi D, Yi C, Décoppet J D, Luo J, Zakeeruddin S M, Hagfeldt A, Grätzel M 2016 Science 353 58Google Scholar

    [11]

    Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S 2016 Nature 536 312Google Scholar

    [12]

    Burschka J, Pellet N, Moon S J, Humphry B R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [13]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T 2014 Nat. Mater. 13 476Google Scholar

    [14]

    Zhang Q, Ha S T, Liu X, Sum T C, Xiong Q 2014 Nano Lett. 14 5995Google Scholar

    [15]

    Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S, Zhu X 2015 Nat. Mater. 14 636Google Scholar

    [16]

    Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y 2016 Nat. Nanotechnol. 11 872Google Scholar

    [17]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D 2014 Bright Nat. Nanotechnol. 9 687Google Scholar

    [18]

    Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C 2018 Nature 562 245Google Scholar

    [19]

    Ha S T, Shen C, Zhang J, Xiong Q 2016 Nat. Photonics 10 115Google Scholar

    [20]

    Kim H G, Hwang D W, Kim Y G, Lee J 1999 Chem. Commun. 12 1077

    [21]

    Luo J, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Grätzel M 2014 Science 345 1593Google Scholar

    [22]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H 2013 Science 342 341Google Scholar

    [23]

    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K 2015 Science 347 519Google Scholar

    [24]

    Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T 2015 Science 349 1518Google Scholar

    [25]

    Im J H, Luo J, Franckevičius M, Pellet N, Gao P, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M, Park N G 2015 Nano Lett. 15 2120Google Scholar

    [26]

    Kojima A, Ikegami M, Teshima K, Miyasaka T 2012 Chem. Lett. 41 397Google Scholar

    [27]

    Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585Google Scholar

    [28]

    Schmidt L C, Pertegás A, González C S, Malinkiewicz O, Agouram S, Minguez Espallargas G, Bolink H J, Galian R E, Pérez P J 2014 J. Am. Chem. Soc. 136 850Google Scholar

    [29]

    Muthu C, Nagamma S R, Nair V C 2014 RSC Adv. 4 55908Google Scholar

    [30]

    Gonzalez C S, Galian R E, Pérez P J 2015 J. Mater. Chem. A 3 9187Google Scholar

    [31]

    Huang H, Susha A S, Kershaw S V, Hung T F, Rogach A 2015 Adv. Sci. 2 1500194Google Scholar

    [32]

    Zhang F, Zhong H, Chen C, Wu X, Hu X, Huang H, Han J, Zou B, Dong Y 2015 ACS Nano 9 4533Google Scholar

    [33]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S 2014 Nat. Mater. 13 897Google Scholar

    [34]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M 2015 Nano Lett. 15 3692Google Scholar

    [35]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M 2015 Nano Lett. 15 5635Google Scholar

    [36]

    Akkerman Q A, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L 2015 J. Am. Chem. Soc. 137 10276Google Scholar

    [37]

    Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A 2015 Angew. Chem. 127 15644Google Scholar

    [38]

    Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J 2016 Science 354 92Google Scholar

    [39]

    Yang G, Fan Q, Chen B, Zhou Q, Zhong H 2016 J. Mater. Chem. C 4 11387Google Scholar

    [40]

    de Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [41]

    Duan J, Wang Y, Yang X, Tang Q 2020 Angew. Chem. Int. Ed. 59 4391Google Scholar

    [42]

    Zhao Q, Hazarika A, Chen X, Harvey S P, Larson B W, Teeter G R, Liu J, Song T, Xiao C, Shaw L 2019 Nat. Commun. 10 1Google Scholar

    [43]

    Ling X, Zhou S, Yuan J, Shi J, Qian Y, Larson B W, Zhao Q, Qin C, Li F, Shi G 2019 Adv. Energy Mater. 9 1900721Google Scholar

    [44]

    Waleed A, Tavakoli M M, Gu L, Hussain S, Zhang D, Poddar S, Wang Z, Zhang R, Fan Z 2017 Nano Lett. 17 4951Google Scholar

    [45]

    Tavakoli M M, Waleed A, Gu L, Zhang D, Tavakoli R, Lei B, Su W, Fang F, Fan Z 2017 Nanoscale 9 5828Google Scholar

    [46]

    Zhang D, Eaton S W, Yu Y, Dou L, Yang P 2015 J. Am. Chem. Soc. 137 9230Google Scholar

    [47]

    Shoaib M, Zhang X, Wang X, Zhou H, Xu T, Wang X, Hu X, Liu H, Fan X, Zheng W 2017 J. Am. Chem. Soc. 139 15592Google Scholar

    [48]

    Eaton S W, Lai M, Gibson N A, Wong A B, Dou L, Ma J, Wang L W, Leone S R, Yang P 2016 PNAS 113 1993Google Scholar

    [49]

    Ha S T, Su R, Xing J, Zhang Q, Xiong Q 2017 Chem. Sci. 8 2522Google Scholar

    [50]

    Wang M, Tian W, Cao F, Wang M, Li L 2020 Adv. Funct. Mater. 30 1909771Google Scholar

    [51]

    Tong G, Jiang M, Son D Y, Qiu L, Liu Z, Ono L K, Qi Y 2020 ACS Appl. Mater. Interfaces 12 14185Google Scholar

    [52]

    Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 PNAS 102 10451Google Scholar

    [53]

    Dou L 2017 J. Mater. Chem. C 5 11165Google Scholar

    [54]

    Jagielski J, Kumar S, Yu W Y, Shih C J 2017 J. Mater. Chem. C 5 5610Google Scholar

    [55]

    Ha S T, Liu X, Zhang Q, Giovanni D, Sum T C, Xiong Q 2014 Adv. Opt. Mater. 2 838Google Scholar

    [56]

    Green M A, Ho B A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [57]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [58]

    Li W, Wang Z, Deschler F, Gao S, Friend R H, Cheetham A K 2017 Nat. Rev. Mater. 2 16099Google Scholar

    [59]

    Mitzi D B, Prikas M T, Chondroudis K 1999 Chem. Mat. 11 542Google Scholar

    [60]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [61]

    Bekenstein Y, Koscher B A, Eaton S W, Yang P, Alivisatos A 2015 J. Am. Chem. Soc. 137 16008Google Scholar

    [62]

    Chen J, Gan L, Zhuge F, Li H, Song J, Zeng H, Zhai T A 2017 Angew. Chem. 129 2430Google Scholar

    [63]

    Wang Y, Shi Y, Xin G, Lian J, Shi J 2015 Cryst. Growth Des. 15 4741Google Scholar

    [64]

    Niu L, Liu X, Cong C, Wu C, Wu D, Chang T R, Wang H, Zeng Q, Zhou J, Wang X 2015 Adv. Mater. 27 7800Google Scholar

    [65]

    Zallen R, Slade M L 1975 Solid State Commun. 17 1561Google Scholar

    [66]

    Liu Z, Li Y, Guan X, Al H A, Ha S T, Chiu M H, Ma C, Amer M R, Li L J 2019 J. Phys. Chem. Lett. 10 2363Google Scholar

    [67]

    Liu J, Leng J, Wu K, Zhang J, Jin S 2017 J. Am. Chem. Soc. 139 1432Google Scholar

    [68]

    Cheng H C, Wang G, Li D, He Q, Yin A, Liu Y, Wu H, Ding M, Huang Y, Duan X 2016 Nano Lett. 16 367Google Scholar

    [69]

    Niu W, Eiden A, Vijaya Prakash G, Baumberg J 2014 Appl. Phys. Lett. 104 171111Google Scholar

    [70]

    Yaffe O, Chernikov A, Norman Z M, Zhong Y, Velauthapillai A, van der Zande A, Owen J S, Heinz T 2015 Phys. Rev. B 92 045414Google Scholar

    [71]

    Dang Z, Dhanabalan B, Castelli A, Dhall R, Bustillo K C, Marchelli D, Spirito D, Petralanda U, Shamsi J, Manna L 2020 Nano Lett. 20 1808Google Scholar

    [72]

    Dong H, Zhang C, Liu X, Yao J, Zhao S 2020 Chem. Soc. Rev. 49 951Google Scholar

    [73]

    Bade S G R, Li J, Shan X, Ling Y, Tian Y, Dilbeck T, Besara T, Geske T, Gao H, Ma B 2016 ACS Nano 10 1795Google Scholar

    [74]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S 2016 Adv. Mater. 28 6804Google Scholar

    [75]

    Yantara N, Bhaumik S, Yan F, et al. 2015 J. Phys. Chem. Lett. 6 4360Google Scholar

    [76]

    Wu K, Liang G, Shang Q, Ren Y, Kong D, Lian T 2015 J. Am. Chem. Soc. 137 12792Google Scholar

    [77]

    Wang D, Wright M, Elumalai N K, Uddin 2016 Sol. Energy Mater. Sol. Cells 147 255Google Scholar

    [78]

    Bella F, Griffini G, Correa B J P, Saracco G, Grätzel M, Hagfeldt A, Turri S, Gerbaldi C 2016 Science 354 203Google Scholar

    [79]

    Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H, Grätzel M 2015 Nat. Chem. 7 703Google Scholar

    [80]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q 2016 Nat. Nanotechnol. 11 75Google Scholar

    [81]

    Fu Y, Zhu H, Stoumpos C C, Ding Q, Wang J, Kanatzidis M G, Zhu X, Jin S 2016 ACS Nano 10 7963Google Scholar

    [82]

    Liu P, He X, Ren J, Liao Q, Yao J, Fu H 2017 ACS Nano 11 5766Google Scholar

    [83]

    Stylianakis M M, Maksudov T, Panagiotopoulos A, Kakavelakis G, Petridis K 2019 Materials 12 859Google Scholar

    [84]

    Evans T J S, Schlaus A, Fu Y, Zhong X, Atallah T L, Spencer L E B, Jin S, Zhu X Y 2018 Adv. Opt. Mater. 6 1700982Google Scholar

    [85]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [86]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J 2014 Science 345 542Google Scholar

    [87]

    Wu T, Li J, Zou Y, Xu H, Wen K, Wan S, Bai S, Song T, McLeod J A, Duhm S 2020 Angew. Chem. Int. Ed. 59 4099Google Scholar

    [88]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y, Ohisa S, Kido J 2018 Nat. Photonics 12 681Google Scholar

    [89]

    Weber D 1978 Z. Naturforsch, . B: Chem. Sci. 33 1443Google Scholar

    [90]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [91]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry B R, Yum J H, Moser J 2012 Sci. Rep. 2 1

    [92]

    Bi D, Yi C, Luo J, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 1

    [93]

    Yoo J J, Wieghold S, Sponseller M C, et al. 2019 Energy Environ. Sci. 12 2192Google Scholar

    [94]

    Mahapatra A, Prochowicz D, Tavakoli M M, Trivedi S, Kumar P, Yadav P 2020 J. Mater. Chem. A 8 27Google Scholar

    [95]

    Feng J, Zhu X, Yang Z, Zhang X, Niu J, Wang Z, Zou S, Priya S, Liu S, Yang D 2018 Adv. Mater. 30 1801418Google Scholar

    [96]

    Chen H, Yang S 2019 J. Mater. Chem. A 7 15476Google Scholar

    [97]

    Chin X Y, Cortecchia D, Yin J, Bruno A, Soci C 2015 Nat. Commun. 6 7383Google Scholar

    [98]

    Li C, Han C, Zhang Y, Zang Z, Wang M, Tang X, Du J 2017 Sol. Energy Mater. Sol. Cells 172 341Google Scholar

    [99]

    Park Y J, Kim M, Song A, Kim J Y, Chung K B, Walker B, Seo J H, Wang D H 2020 ACS Appl. Mater. Interfaces 12 35175Google Scholar

  • [1] 陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦. 非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿. 物理学报, 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [2] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究. 物理学报, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [3] 潘晓剑, 包黎红, 宁军, 赵凤岐, 朝洛蒙, 刘子忠. 多元纳米稀土六硼化物Nd1–xEuxB6粉末的制备及光吸收研究. 物理学报, 2021, 70(3): 036101. doi: 10.7498/aps.70.20201288
    [4] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用. 物理学报, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [5] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [6] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [7] 胡海洋, 陈吉堃, 邵飞, 吴勇, 孟康康, 李志鹏, 苗君, 徐晓光, 王嘉鸥, 姜勇. 应力下SmNiO3钙钛矿氧化物薄膜材料的电导与红外光电导. 物理学报, 2019, 68(2): 026701. doi: 10.7498/aps.68.20181513
    [8] 程大伟, 包黎红, 张红艳, 潘晓剑, 那仁格日乐, 赵凤岐, 特古斯, 朝洛濛. 蒸发冷凝法制备超细CeB6和SmB6纳米粉末及可见光穿透特性. 物理学报, 2019, 68(24): 246101. doi: 10.7498/aps.68.20191312
    [9] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究. 物理学报, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [10] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [11] 赖占平. 二维辉钼材料及器件研究进展. 物理学报, 2013, 62(5): 056801. doi: 10.7498/aps.62.056801
    [12] 刘军, 周伟昌, 张建福. CdS:Cu一维纳米结构及其光子学特性研究. 物理学报, 2012, 61(20): 206101. doi: 10.7498/aps.61.206101
    [13] 邵宇飞, 王绍青. 基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展. 物理学报, 2010, 59(10): 7258-7265. doi: 10.7498/aps.59.7258
    [14] 贾曦, 刘爱萍, 刘洋溢, 唐为华, 王君伟. SnO2微纳米材料的合成及其生长机理研究. 物理学报, 2009, 58(4): 2572-2577. doi: 10.7498/aps.58.2572
    [15] 刘永生, 杨文华, 朱艳燕, 陈静, 杨正龙, 杨金焕. 新型空间硅太阳电池纳米减反射膜系的优化设计. 物理学报, 2009, 58(7): 4992-4996. doi: 10.7498/aps.58.4992
    [16] 林志贤, 郭太良, 胡利勤, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 四角状氧化锌纳米材料的场致发射平板显示器. 物理学报, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
    [17] 邵元智, 钟伟荣, 任 山, 蔡志苏, 龚 雷. 纳米团聚生长的多重分形谱. 物理学报, 2005, 54(7): 3290-3296. doi: 10.7498/aps.54.3290
    [18] 马春兰. 高质量规则多孔氧化铝模板的制备. 物理学报, 2004, 53(6): 1952-1955. doi: 10.7498/aps.53.1952
    [19] 羊新胜, 王 豫, 董 亮, 张 锋, 齐立桢. 纳米WO3块体材料的电致变色效应. 物理学报, 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [20] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性. 物理学报, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
计量
  • 文章访问数:  16035
  • PDF下载量:  556
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 修回日期:  2020-12-21
  • 上网日期:  2021-04-08
  • 刊出日期:  2021-04-20

/

返回文章
返回