搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴撞击超亲水表面的最大铺展直径预测模型

春江 王瑾萱 徐晨 温荣福 兰忠 马学虎

引用本文:
Citation:

液滴撞击超亲水表面的最大铺展直径预测模型

春江, 王瑾萱, 徐晨, 温荣福, 兰忠, 马学虎

Theoretical model of maximum spreading diameter on superhydrophilic surfaces

Chun Jiang, Wang Jin-Xuan, Xu Chen, Wen Rong-Fu, Lan Zhong, Ma Xue-Hu
PDF
HTML
导出引用
  • 液滴撞击超亲水表面铺展之后形成的薄液膜铺展直径是喷雾冷却、降膜蒸发等传热传质过程的一项关键控制参数. 以往模型在预测超亲水表面惯性力驱动下的最大铺展直径时, 存在低韦伯数下呈反常趋势、高韦伯数下预测值偏低等问题. 针对上述问题, 本文采用高速摄像技术研究液滴撞击过程中的铺展水力学特性, 发现了以往模型未完全考虑超亲水表面的铺展特性: 球冠状液膜、高黏性阻力及重力势能做功. 本文考虑了液膜球冠形态、重力势能、辅助耗散, 修正了以往最大铺展直径的预测模型, 并建立了适用于超亲水表面最大铺展直径的预测模型. 通过对铺展过程中各能量成分分析发现, 在超亲水表面上动能、表面能、重力势能均转化为黏性耗散能, 其中: 在低韦伯数下, 表面能转化为黏性耗散能占主要作用; 在高韦伯数下, 动能转化为黏性耗散能占主要作用. 并且, 在低韦伯数下, 重力势能和辅助耗散的引入对于准确预测超亲水表面最大铺展直径具有重要作用. 将模型预测结果与实验结果比较发现, 本模型成功消除了以往模型在低韦伯数下的反常趋势, 且能较好预测宽韦伯数范围下超亲水表面最大铺展直径. 同时, 本模型可以预测亲水和疏水固体表面的液滴最大铺展直径. 超亲水表面最大铺展直径的准确预测模型的提出对喷雾冷却, 降膜蒸发中提高和控制流体铺展距离和传热效率具有重要意义.
    Liquid droplets impacting on the solid surface is an ubiquitous phenomenon in natural, agricultural, and industrial processes. The maximum spreading diameter of a liquid droplet impacting on a solid surface is a significant parameter in the industrial applications such as inkjet printing, spray coating, and spray cooling. However, former models cannot accurately predict the maximum spreading diameter on a superhydrophilic surface, especially under low Weber number (We). In this work, the spreading characteristics of a water droplet impacting on a superhydrophilic surface are explored by high-speed technique. The spherical cap of the spreading droplet, gravitational potential energy, and auxiliary dissipation are introduced into the modified theoretical model based on the energy balance. The model includes two viscous dissipation terms: the viscous dissipation of the initial kinetic energy and the auxiliary dissipation in spontaneous spreading. The energy component analysis in the spreading process shows that the kinetic energy, surface energy, and gravitational potential energy are all transformed into the viscous dissipation on the superhydrophilic surface. The transformation of surface energy into viscous dissipation is dominant at lower We while the transformation of kinetic energy into viscous dissipation is dominant at higher We. It is found that the gravitational potential energy and auxiliary dissipation play a significant role in spreading performance at low We according to the energy component analysis. Moreover, the energy components predicted by the modified model accord well with the experimental data. As a result, the proposed model can predict the maximum spreading diameter of a droplet impacting on the superhydrophilic surface accurately. Furthermore, the model proposed in this work can predict the maximum spreading diameter of the droplet impacting on the hydrophilic surface and hydrophobic surface. The results of this work are of great significance for controlling droplet spreading diameter in spray cooling and falling film evaporation.
      通信作者: 马学虎, xuehuma@dlut.edu.cn
    • 基金项目: 国家自然科学基金项目(批准号: 51836002, 52006025)和中央高校基本科研业务费(批准号: DUT20RC(3)016))资助的课题
      Corresponding author: Ma Xue-Hu, xuehuma@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51836002, 52006025) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. DUT20RC(3)016))
    [1]

    Liang G, Mudawar I 2016 Int. J. Heat Mass Transfer 101 577Google Scholar

    [2]

    马学虎, 兰忠, 王凯, 陈彦松, 程雅琦, 杜宾港, 叶轩 2018 化工学报 69 9Google Scholar

    Ma X H, Lan Z, Wang K, Chen Y S, Cheng Y Q, Du B G, Ye X 2018 J. Chem. Ind. Eng. 69 9Google Scholar

    [3]

    Snoeijer J H, Andreotti B 2013 Annu. Rev. Fluid Mech. 45 269Google Scholar

    [4]

    朱君悦, 段远源, 王晓东, 闵琪 2014 化工学报 65 765Google Scholar

    Zhu J Y, Duan Y Y, Wang X D, Min Q 2014 J. Chem. Ind. Eng. 65 765Google Scholar

    [5]

    刘海龙, 沈学峰, 王睿, 曹宇, 王军锋 2018 力学学报 50 1024Google Scholar

    Liu H L, Shen X F, Wang R, Cao Y, Wang J F 2018 Acta Mech. Sin. 50 1024Google Scholar

    [6]

    闵琪, 段远源, 王晓东, 吴莘馨 2013 热科学与技术 12 335Google Scholar

    Min Q, Duan Y Y, Wang X D, Wu X X 2013 J. Therm. Sci. Technol. 12 335Google Scholar

    [7]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B 23 074702Google Scholar

    [8]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185Google Scholar

    [9]

    Wang Y B, Wang Y F, Gao S R, Yang Y R, Wang X D, Chen M 2020 Langmuir 36 9306Google Scholar

    [10]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702Google Scholar

    [11]

    Song M, Liu Z, Ma Y, Dong Z, Wang Y, Jiang L 2017 NPG Asia Mater. 9 1Google Scholar

    [12]

    王高远, 胥蕊娜, 陈剑楠, 陈学, 姜培学 2018 工程热物理学报 39 1797Google Scholar

    Wang G Y, Xu R N, Chen J N, Chen X, Jiang P X 2018 J. Eng. Thermphys. 39 1797Google Scholar

    [13]

    Lin S, Zhao B, Zou S, Guo J, Wei Z, Chen L 2018 J. Colloid Interface Sci. 516 86Google Scholar

    [14]

    Lee J B, Derome D, Guyer R, Carmeliet J 2016 Langmuir 32 1299Google Scholar

    [15]

    Tang C, Qin M, Weng X, Zhang X, Zhang P, Li J, Huang Z 2017 Int. J. Multiphase Flow 96 56Google Scholar

    [16]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [17]

    Ding B, Wang H, Zhu X, Chen R, Liao Q 2018 Int. J. Heat Mass Transfer 124 1025Google Scholar

    [18]

    范瑶, 王宏, 朱恂, 黄格永, 丁玉栋, 廖强 2016 化工学报 67 2709Google Scholar

    Fan Y, Wang H, Zhu X, Huang G Y, Ding Y D, Liao Q 2016 J. Chem. Ind. Eng. 67 2709Google Scholar

    [19]

    Ding B, Wang H, Zhu X, Chen R, Liao Q 2019 Int. J. Heat Mass Transfer 138 844Google Scholar

    [20]

    Chen M, Wu D, Chen D, Deng J, Liu H, Jiang J 2020 Chem. Eng. Sci. 226 115864Google Scholar

    [21]

    焦云龙, 刘小君, 逄明华, 刘焜 2016 物理学报 65 016801Google Scholar

    Jiao Y L, Liu X J, Pang M H, Liu K 2016 Acta Phys. Sin. 65 016801Google Scholar

    [22]

    叶学民, 李永康, 李春曦 2016 物理学报 65 234701Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 234701Google Scholar

    [23]

    Roisman I V 2009 Phys. Fluids 21 052104Google Scholar

    [24]

    Liang G, Chen Y, Chen L, Shen S 2019 Ind. Eng. Chem. Res. 58 10053Google Scholar

    [25]

    Laan N, de Bruin K G, Bartolo D, Josserand C, Bonn D 2014 Phys. Rev. Appl. 2 044018Google Scholar

    [26]

    Lee J B, Laan N, de Bruin K G, Skantzaris G, Shahidzadeh N, Derome D, Carmeliet J, Bonn D 2016 J. Fluid Mech. 786 R4Google Scholar

    [27]

    Chandra S, Avedisian C T 1991 Proc. R. Soc. A 432 13Google Scholar

    [28]

    Pasandideh‐Fard M, Qiao Y M, Chandra S, Mostaghimi J 1996 Phys. Fluids 8 650Google Scholar

    [29]

    Mao T, Kuhn D C S, Tran H 1997 AlChE J. 43 2169Google Scholar

    [30]

    Ukiwe C, Kwok D Y 2005 Langmuir 21 666Google Scholar

    [31]

    Huang H M, Chen X P 2018 Phys. Fluids 30 022106Google Scholar

    [32]

    Park H, Carr W W, Zhu J, Morris J F 2003 AlChE J. 49 2461Google Scholar

    [33]

    Li Ri, Ashgriz Nasser, Sanjeev C 2010 J. Fluids Eng. 132 061302Google Scholar

    [34]

    Gao X, Li R 2014 AlChE J. 60 2683Google Scholar

    [35]

    Wang F, Yang L, Wang L, Zhu Y, Fang T 2019 Langmuir 35 3204Google Scholar

    [36]

    Panda A, Pati A R, Saha B, Kumar A, Mohapatra S S 2019 Chem. Eng. Sci. 207 527Google Scholar

    [37]

    Zhang Z, Jiang P X, Christopher D M, Liang X-G 2015 Int. J. Heat Mass Transfer 80 26Google Scholar

    [38]

    Zheng Y, Ma X, Li Y, Jiang R, Wang K, Lan Z, Liang Q 2017 Appl. Therm. Eng. 111 1548Google Scholar

    [39]

    Nam Y, Ju Y S 2013 J. Adhes. Sci. Technol. 27 2163Google Scholar

    [40]

    Vadillo D C, Soucemarianadin A, Delattre C, Roux D C D 2009 Phys. Fluids 21 122002Google Scholar

  • 图 1  液滴铺展实验系统(A: 高速摄像机(Photron APX RS); B: 高速摄像机(Photron Mini UX100); C: 微量注射泵(LSP01-1 BH); D: 液滴生成装置; E: 恒温台; F: 高亮光源; G: 数据采集设备; G: 精确自动控制位移的直线位移滑台)

    Fig. 1.  The droplet spreading experiment platform. (A: high speed camera (Photron APX RS); B: high speed camera (Photron Mini UX100); C: micro syringe pump (LSP01-1 BH); D: droplet generating device; E: heating platform; F: diffuse light source; G: data acquisition computer; H: linear displacement slide.

    图 2  (a)光滑铜表面的SEM图; (b)超亲水表面SEM图

    Fig. 2.  SEM images of (a) smooth copper surface and (b) superhydrophilic surface.

    图 3  液滴铺展过程 (a)光滑铜亲水表面; (b)超亲水表面We = 1.91; (c)超亲水表面We = 25.59

    Fig. 3.  Droplet spreading process: (a) Smooth copper hydrophilic surface; (b) superhydrophilic surface at We = 1.91; (c) superhydrophilic surface at We = 25.59.

    图 4  液滴在不同We下撞击超亲水表面铺展因子随时间的变化过程

    Fig. 4.  The variation of spreading factor β with time

    图 5  液滴在超亲水表面最大铺展直径形态

    Fig. 5.  Sketch of droplet shape at its maximum spread on superhydrophilic surface.

    图 6  (a)模型计算的ΔEk, ΔEs, W, ΔEpWe的变化; (b)低We下ΔEk, ΔEs, W, ΔEp占总能量的占比(青色区域放大)

    Fig. 6.  (a) Variation of the energy component: ΔEk, ΔEs, W, ΔEp with We; (b) comparison of the energy component: ΔEk, ΔEs, W, ΔEp at low We

    图 7  (a)超亲水表面液滴铺展过程各项黏性耗散实验和模型计算值对比; b)低We下总黏性耗散中WvisWad的占比(青色区域放大)

    Fig. 7.  (a) Variation of the viscous dissipation components value with We; (b) comparison of the Wvis, Wad at low We.

    图 8  液滴在不同We下撞击超亲水表面最大铺展因子的实验和模型预测结果对比(模型包括去除重力势能或辅助耗散的模型及全部考虑的模型)

    Fig. 8.  Comparison of the current experimental measurements of βm with the theoretical prediction from model (models includes without Ep, without Wad and present model).

    表 1  基于能量守恒的最大铺展因子的预测模型

    Table 1.  Theoretical models for predicting the maximum spreading factor.

    文献最大铺展模型预测表达式表面润湿
    性/(°)
    We液滴形态
    Lee等[14]$\begin{aligned} \rho {V_0}{D_0} + 12\sigma\qquad\qquad\qquad\qquad\quad\qquad\qquad\qquad\qquad \\= 3\sigma (1 - \cos \theta )\beta _{\rm{m} }^2 + 8\sigma \dfrac{1}{ { {\beta _{\rm{m} } } } } + 3\sqrt { {b / c} } \rho V_{\rm{0} }^2{D_0}\beta _{\rm{m} }^{ {5 / 2} }\dfrac{1}{ {\sqrt {Re} } }\end{aligned}$60—1151—290圆饼
    Chandra等[27]$\dfrac{3}{2}\dfrac{ {We} }{ {Re} }\beta _{\rm{m} }^4 + \left( {1 - \cos \theta } \right)\beta _{\rm{m} }^2 - \left( {\dfrac{1}{3}We + 4} \right) = 0$~32~43圆饼
    Pasandideh-
    Fard等[28]
    ${\beta _{\rm{m} } } = \sqrt {\dfrac{ {We + 12} }{ {3\left( {1 - \cos {\theta _{\rm{a} } } } \right) + 4\left( { { {We} / {\sqrt {Re} } } } \right)} } }$27—14027—447圆饼
    Mao等[29]$\left( {\dfrac{ {1 - \cos \theta } }{4} + 0.35\dfrac{ {We} }{ {\sqrt {Re} } } } \right)\beta _{\rm{m} }^4 - \left( {\dfrac{ {We} }{ {12} } + 1} \right)\beta + \dfrac{2}{3} = 0$30—1205—1000圆饼
    Ukiwe等[30]$\left( {We + 12} \right){\beta _{\rm{m} } } = 8 + \beta _{\rm{m} }^3\left[ {3\left( {1 - \cos \theta } \right) + 4\dfrac{ {We} }{ {\sqrt {Re} } } } \right]$57—9018—370圆饼
    Huang等[31]$\begin{aligned}\frac{3}{4}\left( {\frac{ {We} }{ {\sqrt {Re} } } + \frac{ {We^*} }{ {\sqrt {Re^*} } } } \right)\beta _{\rm{m} }^4 + 3\left( {1 - \cos {\theta _{\rm{a} } } } \right)\beta _{\rm{m} }^3 \qquad\\ - \left( {We + 12} \right){\beta _{\rm{m} } } + 8 = 0, ~~{V_0} < V^* \qquad\qquad\qquad\end{aligned}$


    $\begin{aligned} \frac{3}{4}\left( {\frac{ {We} }{ {\sqrt {Re} } } + \frac{ {We^*} }{ {\sqrt {Re^*} } }\frac{ {Re^*} }{ {Re} } } \right)\beta _{\rm{m} }^4 + 3\left( {1 - \cos {\theta _{\rm{a} } } } \right)\beta _{\rm{m} }^3 \\ - \left( {We + 12} \right){\beta _{\rm{m} } } + 8 = 0,~~ {V_0} > V^*\qquad\qquad\qquad \end{aligned}$
    64—1102—500圆饼
    Park等[32]$\begin{aligned} \left( {0.33\frac{ {We} }{ {\sqrt {Re} } } - \frac{1}{4}\cos \theta + \frac{1}{2}\left( {\frac{ {1 - \cos {\theta _{\rm{a} } } } }{ { { {\sin }^2}{\theta _{\rm{a} } } } } } \right)} \right)\beta _{\rm{m} }^2 \\ - 1 - \frac{ {We} }{ {12} } + \frac{ {\Delta {E_{\rm{s} } } } }{ { {\text{π} }D_0^2\sigma } } = 0 \qquad\qquad\qquad\qquad\quad\end{aligned}$31—1130.2—180球冠
    Li等[33]$\dfrac{ {We} }{ {12} }\left( {1 - {C_{\rm{k} } } - \dfrac{3}{ {2\sqrt {Re} } }\displaystyle\int_{ {H_{\rm{m} } } }^{ {H_{\rm{s} } } } { {d^2}{\rm{d} }h} } \right) = {C_{\rm{S} } }P\left( { {D_{\rm{e} } } } \right) - P\left( { {D_{ {\rm{max} } } } } \right)$30—1500—10球冠
    Gao等[34]$\begin{aligned} 1 + \frac{ {We} }{ {12} } = \frac{1}{6}\left[ {\frac{1}{ { { {\hat r}_{\rm{c} } } } } + \frac{1}{ { { {\hat R}_{\rm{c} } } } } } \right] + 4{\theta _{\rm{a} } }{ {\hat r}_{\rm{c} } }{ {\hat R}_{\rm{c} } } + {\left( { { {\hat R}_{\rm{c} } } - { {\hat r}_{\rm{c} } }\sin {\theta _{\rm{a} } } } \right)^2} \\ + {\left( { { {\hat R}_{\rm{c} } } + { {\hat r}_{\rm{c} } }\sin {\theta _{\rm{a} } } } \right)^2}\left( {\frac{4}{3}\frac{ {We} }{ {\sqrt {Re} } } - \cos {\theta _{\rm{a} } } } \right) \qquad\quad\end{aligned}$74—155135—210圆环
    Wang等[35]$\begin{aligned} We + 12 =\qquad \qquad\qquad \qquad\qquad \qquad\qquad\qquad\qquad\qquad\qquad \qquad\\ \frac{3}{4}\left( {\frac{ {We} }{ {\sqrt {Re} } } + \alpha \frac{ {W{e_{\rm{c} } } } }{ {\sqrt {R{e_{\rm{c} } } } } } } \right)\beta _{\rm{m} }^3 + 3\left( {1 - \cos {\theta _{\rm{a} } } } \right)\beta _{\rm{m} }^2 + 12\bigg\{ \frac{ {\xi _{\rm{r} }^2} }{ { { {\left( {1 - \cos {\theta _{\rm{m} } } } \right)}^2} } } \\ \times \bigg[ {\sin ^2}{\theta _{\rm{m} } } - \frac{ { {\beta _{\rm{m} } } } }{ { {\xi _{\rm{r} } } } }\sin {\theta _{\rm{m} } }(1 - \cos {\theta _{\rm{m} } }) + 2(1 - \cos {\theta _{\rm{m} } }) \bigg] \qquad \qquad \qquad \\ \left. + 2{\xi _{\rm{r} } }\left( {\frac{ { {\beta _{\rm{m} } } } }{2} - {\xi _{\rm{r} } }\frac{ {\sin {\theta _{\rm{m} } } } }{ {1 - \cos {\theta _{\rm{m} } } } } } \right)\left( {\left| {1 - \kappa } \right| + \frac{ { {\theta _{\rm{m} } } } }{ {1 - \cos {\theta _{\rm{m} } } } } } \right) \right\}\qquad\qquad \quad \end{aligned}$34—1000.1—427环状-薄片
    下载: 导出CSV

    表 2  超亲水表面最大铺展因子βm实验结果与以往典型模型预测值[27-32]之间的比较

    Table 2.  Comparison of previous model[27-32] prediction value of βm with experimental data

    V0/(m·s–1)Weβm-expChandra 等[27]Pasandideh-Fard 等[28]Mao等[29]Park等[32]Ukiwe 等[30]Huang等[31]
    0.251.913.412.46.373.0511.315.840.58
    0.445.903.462.14.822.557.934.420.44
    0.6010.773.601.974.372.416.674.020.35
    0.7115.263.821.934.202.376.093.900.29
    0.9325.593.931.894.072.355.413.820.20
    13051.174.081.904.082.384.93.930.12
    1.5068.594.261.914.132.414.783.930.10
    1.89109.34.431.934.262.474.674.070.06
    2.35168.984.701.974.422.544.664.240.04
    2.8239.894.902.004.572.604.724.390.03
    3.08290.085.002.024.672.644.764.480.02
    下载: 导出CSV

    表 3  本文模型预测值与文献[28,29]中不同润湿性表面的最大铺展因子的实验值对比

    Table 3.  Comparison of current theoretical model of βm with experimental data in literature[28,29].

    固体/液体D0, mmV0/(m·s–1)Weθ/(°)βm-expβm-model(βm-expβm-model)/ βm-model
    玻璃/水2.70.5511.21371.772.410.26
    玻璃/水2.70.8224.91372.202.740.19
    玻璃/水2.71.0037.05372.532.940.14
    玻璃/水2.71.5892.48373.113.510.11
    玻璃/水2.71.86128.17373.703.810.03
    玻璃/水2.72.77284.26374.504.480.00
    玻璃/水2.73.72512.67374.944.890.01
    不锈钢/水2.70.5511.21671.671.950.14
    不锈钢/水2.70.8224.91672.162.280.05
    不锈钢/水2.71.0037.05672.342.510.06
    不锈钢/水2.71.5892.48673.093.130.01
    不锈钢/水2.71.86128.17673.673.380.08
    不锈钢/水2.72.77284.26674.424.150.06
    不锈钢/水2.73.72512.67674.884.650.05
    石蜡/水2.70.5511.21971.651.580.04
    石蜡/水2.70.8224.91972.101.910.10
    石蜡/水2.71.0037.05972.262.130.06
    石蜡/水2.71.5892.48973.012.790.07
    石蜡/水2.71.86128.17973.603.090.16
    石蜡/水2.72.77284.26974.323.890.11
    石蜡/水2.73.72512.67974.784.440.08
    蜂蜡/水0.622.61591112.652.190.21
    蜂蜡/水0.783.291181113.182.760.15
    蜂蜡/水0.893.711711113.453.090.11
    蜂蜡/水0.984.002191113.793.330.14
    蜂蜡/水1.054.282711113.913.530.10
    下载: 导出CSV
  • [1]

    Liang G, Mudawar I 2016 Int. J. Heat Mass Transfer 101 577Google Scholar

    [2]

    马学虎, 兰忠, 王凯, 陈彦松, 程雅琦, 杜宾港, 叶轩 2018 化工学报 69 9Google Scholar

    Ma X H, Lan Z, Wang K, Chen Y S, Cheng Y Q, Du B G, Ye X 2018 J. Chem. Ind. Eng. 69 9Google Scholar

    [3]

    Snoeijer J H, Andreotti B 2013 Annu. Rev. Fluid Mech. 45 269Google Scholar

    [4]

    朱君悦, 段远源, 王晓东, 闵琪 2014 化工学报 65 765Google Scholar

    Zhu J Y, Duan Y Y, Wang X D, Min Q 2014 J. Chem. Ind. Eng. 65 765Google Scholar

    [5]

    刘海龙, 沈学峰, 王睿, 曹宇, 王军锋 2018 力学学报 50 1024Google Scholar

    Liu H L, Shen X F, Wang R, Cao Y, Wang J F 2018 Acta Mech. Sin. 50 1024Google Scholar

    [6]

    闵琪, 段远源, 王晓东, 吴莘馨 2013 热科学与技术 12 335Google Scholar

    Min Q, Duan Y Y, Wang X D, Wu X X 2013 J. Therm. Sci. Technol. 12 335Google Scholar

    [7]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B 23 074702Google Scholar

    [8]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185Google Scholar

    [9]

    Wang Y B, Wang Y F, Gao S R, Yang Y R, Wang X D, Chen M 2020 Langmuir 36 9306Google Scholar

    [10]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702Google Scholar

    [11]

    Song M, Liu Z, Ma Y, Dong Z, Wang Y, Jiang L 2017 NPG Asia Mater. 9 1Google Scholar

    [12]

    王高远, 胥蕊娜, 陈剑楠, 陈学, 姜培学 2018 工程热物理学报 39 1797Google Scholar

    Wang G Y, Xu R N, Chen J N, Chen X, Jiang P X 2018 J. Eng. Thermphys. 39 1797Google Scholar

    [13]

    Lin S, Zhao B, Zou S, Guo J, Wei Z, Chen L 2018 J. Colloid Interface Sci. 516 86Google Scholar

    [14]

    Lee J B, Derome D, Guyer R, Carmeliet J 2016 Langmuir 32 1299Google Scholar

    [15]

    Tang C, Qin M, Weng X, Zhang X, Zhang P, Li J, Huang Z 2017 Int. J. Multiphase Flow 96 56Google Scholar

    [16]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [17]

    Ding B, Wang H, Zhu X, Chen R, Liao Q 2018 Int. J. Heat Mass Transfer 124 1025Google Scholar

    [18]

    范瑶, 王宏, 朱恂, 黄格永, 丁玉栋, 廖强 2016 化工学报 67 2709Google Scholar

    Fan Y, Wang H, Zhu X, Huang G Y, Ding Y D, Liao Q 2016 J. Chem. Ind. Eng. 67 2709Google Scholar

    [19]

    Ding B, Wang H, Zhu X, Chen R, Liao Q 2019 Int. J. Heat Mass Transfer 138 844Google Scholar

    [20]

    Chen M, Wu D, Chen D, Deng J, Liu H, Jiang J 2020 Chem. Eng. Sci. 226 115864Google Scholar

    [21]

    焦云龙, 刘小君, 逄明华, 刘焜 2016 物理学报 65 016801Google Scholar

    Jiao Y L, Liu X J, Pang M H, Liu K 2016 Acta Phys. Sin. 65 016801Google Scholar

    [22]

    叶学民, 李永康, 李春曦 2016 物理学报 65 234701Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 234701Google Scholar

    [23]

    Roisman I V 2009 Phys. Fluids 21 052104Google Scholar

    [24]

    Liang G, Chen Y, Chen L, Shen S 2019 Ind. Eng. Chem. Res. 58 10053Google Scholar

    [25]

    Laan N, de Bruin K G, Bartolo D, Josserand C, Bonn D 2014 Phys. Rev. Appl. 2 044018Google Scholar

    [26]

    Lee J B, Laan N, de Bruin K G, Skantzaris G, Shahidzadeh N, Derome D, Carmeliet J, Bonn D 2016 J. Fluid Mech. 786 R4Google Scholar

    [27]

    Chandra S, Avedisian C T 1991 Proc. R. Soc. A 432 13Google Scholar

    [28]

    Pasandideh‐Fard M, Qiao Y M, Chandra S, Mostaghimi J 1996 Phys. Fluids 8 650Google Scholar

    [29]

    Mao T, Kuhn D C S, Tran H 1997 AlChE J. 43 2169Google Scholar

    [30]

    Ukiwe C, Kwok D Y 2005 Langmuir 21 666Google Scholar

    [31]

    Huang H M, Chen X P 2018 Phys. Fluids 30 022106Google Scholar

    [32]

    Park H, Carr W W, Zhu J, Morris J F 2003 AlChE J. 49 2461Google Scholar

    [33]

    Li Ri, Ashgriz Nasser, Sanjeev C 2010 J. Fluids Eng. 132 061302Google Scholar

    [34]

    Gao X, Li R 2014 AlChE J. 60 2683Google Scholar

    [35]

    Wang F, Yang L, Wang L, Zhu Y, Fang T 2019 Langmuir 35 3204Google Scholar

    [36]

    Panda A, Pati A R, Saha B, Kumar A, Mohapatra S S 2019 Chem. Eng. Sci. 207 527Google Scholar

    [37]

    Zhang Z, Jiang P X, Christopher D M, Liang X-G 2015 Int. J. Heat Mass Transfer 80 26Google Scholar

    [38]

    Zheng Y, Ma X, Li Y, Jiang R, Wang K, Lan Z, Liang Q 2017 Appl. Therm. Eng. 111 1548Google Scholar

    [39]

    Nam Y, Ju Y S 2013 J. Adhes. Sci. Technol. 27 2163Google Scholar

    [40]

    Vadillo D C, Soucemarianadin A, Delattre C, Roux D C D 2009 Phys. Fluids 21 122002Google Scholar

  • [1] 黄虎, 田泽冰. 海洋深水表面张力波-重力波的单波列第n阶自共振定律. 物理学报, 2023, 72(5): 054701. doi: 10.7498/aps.72.20221281
    [2] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面. 物理学报, 2022, 71(12): 128101. doi: 10.7498/aps.70.20220288
    [3] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220288
    [4] 吉建伟, 山村和也, 邓辉. 面向单晶SiC原子级表面制造的等离子体辅助抛光技术. 物理学报, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [5] 王凯宇, 庞祥龙, 李晓光. 超疏水表面液滴的振动特性及其与液滴体积的关系. 物理学报, 2021, 70(7): 076801. doi: 10.7498/aps.70.20201771
    [6] 凌中火, 王帅, 张金仓, 张逸竹, 阎天民, 江玉海. 太赫兹辅助测量铷原子超快量子相干过程的理论研究. 物理学报, 2020, 69(17): 173401. doi: 10.7498/aps.69.20200218
    [7] 李春曦, 施智贤, 庄立宇, 叶学民. 活性剂对表面声波作用下薄液膜铺展的影响. 物理学报, 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [8] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [9] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究. 物理学报, 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [10] 焦云龙, 刘小君, 逄明华, 刘焜. 固体表面液滴铺展与润湿接触线的移动分析. 物理学报, 2016, 65(1): 016801. doi: 10.7498/aps.65.016801
    [11] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析. 物理学报, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [12] 杨爱波, 陈林根, 谢志辉, 孙丰瑞. 矩形肋片热沉(火积)耗散率最小与最大热阻最小构形优化的比较研究. 物理学报, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [13] 张倩昀, 曾捷, 李继峰, 周雅斌, 张先辉, 曹海东. 基于辅助电介质层的棱镜表面等离子体共振效应研究. 物理学报, 2014, 63(3): 034207. doi: 10.7498/aps.63.034207
    [14] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变. 物理学报, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [15] 王跃钢, 文超斌, 左朝阳, 杨家胜, 郭志斌. 自适应混沌蚁群径向分析算法求解重力辅助导航匹配问题. 物理学报, 2014, 63(8): 089101. doi: 10.7498/aps.63.089101
    [16] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [17] 邹志宇, 刘晓芳, 曾敏, 杨白, 于荣海, 姜鹤, 唐瑞鹤, 吴章奔. 电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制. 物理学报, 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [18] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [19] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [20] 张权义, 吴耀宇, 彭 政, 刘 锐, 陆坤权, 厚美瑛. 重力驱动下运动物体在颗粒介质中的最大穿透深度. 物理学报, 2006, 55(12): 6203-6207. doi: 10.7498/aps.55.6203
计量
  • 文章访问数:  9543
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-15
  • 修回日期:  2020-12-22
  • 上网日期:  2021-05-11
  • 刊出日期:  2021-05-20

/

返回文章
返回