搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg2Si/Si雪崩光电二极管的设计与模拟

王傲霜 肖清泉 陈豪 何安娜 秦铭哲 谢泉

引用本文:
Citation:

Mg2Si/Si雪崩光电二极管的设计与模拟

王傲霜, 肖清泉, 陈豪, 何安娜, 秦铭哲, 谢泉

Design and simulation of Mg2Si/Si avalanche photodiode

Wang Ao-Shuang, Xiao Qing-Quan, Chen Hao, He An-Na, Qin Ming-Zhe, Xie Quan
PDF
HTML
导出引用
  • Mg2Si作为一种天然丰富的环保材料, 在近红外波段吸收系数高, 应用于光电二极管中对替代市面上普遍使用的含有毒元素的红外探测器具有重要意义. 采用Silvaco软件中Atlas模块构建出以Mg2Si为吸收层的吸收层、电荷层和倍增层分离结构Mg2Si/Si雪崩光电二极管, 研究了电荷层和倍增层的厚度以及掺杂浓度对雪崩光电二极管的内部电场分布、穿通电压、击穿电压、C-V特性和瞬态响应的影响, 分析了偏置电压对I-V特性和光谱响应的影响, 得到了雪崩光电二极管初步优化后的穿通电压、击穿电压、暗电流密度、增益系数(Mn)和雪崩效应后对器件电流的放大倍数(M). 当入射光波长为1.31 µm, 光功率为0.01 W/cm2时, 光电二极管的穿通电压为17.5 V, 击穿电压为50 V, 在外加偏压为47.5 V (0.95倍击穿电压)下, 器件的光谱响应在波长为1.1 µm处取得峰值25 A/W, 暗电流密度约为3.6 × 10–5 A/cm2, Mn为19.6, 且Mn在器件击穿时有最大值为102, M为75.4. 根据模拟计算结果, 优化了器件结构参数, 为高性能的器件结构设计和实验制备提供理论指导.
    InGaAs and HgCdTe materials are widely used in short wave infrared photodetectors, which contain heavy metal elements. The massive use of the heavy metal elements naturally results in their scarcity, and the nonnegligible environmental pollution. Searching for other suitable materials for infrared devices becomes a key to solving the above problems. As a kind of abundant and eco-friendly material, Mg2Si has a high absorption coefficient in the near-infrared band. Its application in infrared detector makes it possible to replace the infrared devices containing toxic elements on the market in the future. The Mg2Si/Si avalanche photodiode(APD) with separation structure of absorption layer, charge layer and multiplication layer, with Mg2Si serving as the absorption layer, is constructed by using the Atlas module in Silvaco software. The effects of the thickness and doping concentration of the charge layer and multiplier layer on the distribution of internal electric field, punch-through voltage, breakdown voltage (Vb), C-V characteristics, and transient response of Mg2Si/Si SACM-APD are simulated. The effects of bias voltage on the I-V characteristics and spectral response are analyzed. The punch-through voltage, breakdown voltage, dark current density, gain coefficient (Mn) and the current amplification factor (M) after avalanche effect of APD are obtained after the structure optimization. According to the simulation results, the spectral response wavelength of the device is extended to 1.6 μm, so the selection of Mg2Si as the absorption layer effectively extends the spectral response band of Si based APD. When the wavelength of incident light is 1.31 µm and the optical power is 10 mW/cm2, the obtained punch-through voltage is 17.5 V, and the breakdown voltage is 50 V. When the bias voltage is 47.5 V (0.95Vb), the peak value of spectral response is 25 A/W at a wavelength of 1.1 μm, a density of dark current is about 3.6 × 10–5 A/cm2, a multiplication factor Mn is 19.6, and Mn achieves a maximum value of 102 when the device is broken down. Meanwhile, the current amplification factor M after avalanche effect is 75.4, and the current gain effect of the SACM structure is obvious. The peak value of spectral response for the pin-type photodiode in the previous study is only 0.742 A/W. Comparing with the pin-type photodiode, the spectral response of Mg2Si/Si SACM-APD is greatly improved. In this work, the structure parameters of the device are optimized, which lays a nice foundation for fabricating the high-performance devices.
      通信作者: 肖清泉, qqxiao@gzu.edu.cn
    • 基金项目: 贵州省留学回国人员科技活动择优资助项目(批准号: [2018]09)、贵州省高层次创新型人才培养项目(批准号: [2015]4015)和贵州省研究生科研基金(批准号: [2020]035)资助的课题
      Corresponding author: Xiao Qing-Quan, qqxiao@gzu.edu.cn
    • Funds: Project supported by the Foundation for Sci-tech Activities for the Overseas Chinese Returnees in Guizhou Province, China (Grant No. [2018]09), the High-level Creative Talent Training Program in Guizhou Province of China (Grant No. [2015]4015), and the Graduate Research Fund in Guizhou Province of China (Grant No. [2020]035)
    [1]

    莫秋燕, 赵彦立 2011 物理学报 60 072902Google Scholar

    Mo Q Y, Zhao Y L 2011 Acta Phys. Sin. 60 072902Google Scholar

    [2]

    Park S M, Grein C H 2019 J. Electron. Mater. 48 8163Google Scholar

    [3]

    Rogalski A 2005 Rep. Prog. Phys. 68 2267Google Scholar

    [4]

    Xu S J, Chua S J, Mei T, Wang X C, Zhang X H, Karunasiri G, Fan W J, Wang C H, Jiang J, Wang S, Xie X G 1998 Appl. Phys. Lett. 73 3153Google Scholar

    [5]

    Rogalski A 2002 Infrared. Phys. Technol. 43 187Google Scholar

    [6]

    Rogalski A 2011 Infrared. Phys. Technol. 54 136Google Scholar

    [7]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [8]

    LaBotz R 1963 J. Electrochem. Soc. 110 127Google Scholar

    [9]

    Kato T, Sago Y, Fujiwara H 2011 J. Appl. Phys. 110 063723Google Scholar

    [10]

    Borisenko V E 2000 Semiconducting Silicides (New York: Springer) pp137−179

    [11]

    Au-Yang M Y, Cohen M L 1969 Phys. Rev. 178 1358Google Scholar

    [12]

    Liao Y F, Fan M H, Xie Q, Xiao Q Q, Xie J, Yu H, Wang S L, Ma X Y 2018 Appl. Surf. Sci. 403 302Google Scholar

    [13]

    Janega P L, McCaffrey J, Landheer D, Buchanan M, Denhoff M, Mitchel D 1988 Appl. Phys. Lett. 53 2056Google Scholar

    [14]

    Udono H, Tajima H, Uchikoshi M, Itakura M 2015 Jpn. J. Appl. Phys. 54 07JB06Google Scholar

    [15]

    Udono H, Yamanaka Y, Uchikoshi M, Isshiki M 2013 J. Phys. Chem. Solids. 74 311Google Scholar

    [16]

    El-Amir A A M, Ohsawa T, Nabatame T, Ohia A, Wadaa Y, Nakamuraa M, Fua K, Shimamuraa K, Ohashia N 2019 Mater. Sci. Semicond. Process. 91 222Google Scholar

    [17]

    陈豪, 肖清泉, 谢泉, 王坤, 史娇娜 2019 材料导报 33 3358Google Scholar

    Chen H, Xiao Q Q, Xie Q, Wang K, Shi J N, 2019 Mater. Rep. 33 3358Google Scholar

    [18]

    Forrest S R, Kim O K, Smith R G 1982 Appl. Phys. Lett. 41 95Google Scholar

    [19]

    张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光 2020 物理学报 69 074204Google Scholar

    Zhang H Y, Wang L L, Wu C Y, Wang Y R, Yang L, Pang H F, Liu Q L, Guo X, Tang K, Zhang Z P, Wu G 2020 Acta Phys. Sin. 69 074204Google Scholar

    [20]

    Nishida K, Taguchi K, Matsumoto Y 1979 Appl. Phys. Lett. 35 251Google Scholar

    [21]

    Deng Q, Wang Z, Wang S, Shao G D 2017 Sol. Energy 158 654Google Scholar

    [22]

    Sekino K, Midonoya M, Udono H, Yamada Y Udono H 2011 Phys. Procedia 11 171Google Scholar

    [23]

    Martin A G 2008 Sol. Energy Mater. Sol. Cells 92 1305Google Scholar

    [24]

    Park C Y, Hyun K, Kang S G, Kim H M 1995 Appl. Phys. Lett. 67 3789Google Scholar

    [25]

    Smetona S, Matukas J, Palenskis V, Olechnovicius M, A. Kaminskas K, Mallard R 2004 Proceedings of SPIE-Photonics North 2004: Optical Components and Devices Ottawa, Canada, September 26–29, 2004 p834

    [26]

    谢天, 叶新辉, 夏辉, 李菊柱, 张帅君, 姜新洋, 邓伟杰, 王文静, 李玉莹, 刘伟伟, 李翔, 李天信 2020 红外与毫米波学报 39 0583Google Scholar

    Xie T, Ye X H, Xia H, Li J Z, Zhang S J, Jiang X Y, Deng W J, Wang W J, Li Y Y, Liu W W, Li X, Li T X 2020 J. Infrared Millim. W. 39 0583Google Scholar

    [27]

    Yuan H, Zhang J, Kim J, Meyer C, Laquindanum J, Kimchi J, Lei J 2018 Proceedings of SPIE -Infrared Sensors, Devices, and Applications VIII San Diego, United States, August 22–23, 2018 p107660 J-1

    [28]

    Wang Y D, Chen J, Xu J D, Li X Y 2018 Infrared Phys. Technol. 89 41Google Scholar

    [29]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第514−523页

    Sze S M, K. Ng K (translated by Geng L, Wu G J) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi’an: Xi’an Jiaotong University Press) pp514−523 (in Chinese)

    [30]

    Lee M J, Rucker H, Choi W Y 2012 IEEE Electron Device Lett. 33 80Google Scholar

  • 图 1  SACM-APD结构示意图

    Fig. 1.  Schematic diagram of SACM-APD.

    图 2  APD的能带结构图

    Fig. 2.  Energy band structure diagram of the APD.

    图 3  Mg2Si与c-Si的光学特性 (a) Mg2Si与c-Si的吸收系数(cm–1)与入射能量的关系; (b) Mg2Si与c-Si的折射率与波长的关系

    Fig. 3.  Optical properties of Mg2Si and c-Si: (a) Absorption coefficient(cm–1) of the poly-Mg2Si and c-Si; (b) refractive Index of the poly-Mg2Si and c-Si.

    图 4  (a) 电荷层厚度为0.1 µm时器件的电场分布; (b) 电荷层厚度为0.2 µm时器件的电场分布

    Fig. 4.  (a) Electric field distribution of the device with charge layer thickness of 0.1 µm; (b) electric field distribution of the device with charge layer thickness of 0.2 µm.

    图 5  Mg2Si/Si SACM-APD器件在不同偏压下内部的载流子生成率

    Fig. 5.  The influence of the different Bias voltage on the carrier generation rate.

    图 6  倍增层不同掺杂浓度时倍增层的电场分布

    Fig. 6.  Electric field distribution of the multiplier layer under different doping concentrations.

    图 7  电荷层厚度、掺杂浓度与击穿电压和穿通电压之间的关系

    Fig. 7.  The relation between the thickness and doping concentration of charge layer and the breakdown voltage, the punch-through voltage.

    图 8  不同倍增层厚度时的击穿电压与穿通电压

    Fig. 8.  Breakdown voltage and penetration voltage at different thicknesses of the multiplier layer.

    图 9  倍增层不同掺杂浓度与穿通电压和击穿电压关系

    Fig. 9.  Breakdown voltage and penetration voltage at different doping concentration of the multiplier layer.

    图 10  APD的I-V特性与增益系数

    Fig. 10.  I-V characteristics and gain coefficient of APD.

    图 11  不同的偏置电压对APD光谱响应的影响

    Fig. 11.  Effect of different bias voltages on the spectral response of APD.

    图 12  倍增层厚度对器件电容的影响

    Fig. 12.  The influence of the thickness of multiplication layer on the capacitance of the device.

    图 13  不同倍增层厚度时器件的瞬态响应

    Fig. 13.  Transient response of the device for different thickness of the multiplication layer.

    表 1  APD的结构参数

    Table 1.  Structural parameters of the APD.

    层名符号厚度/μm符号浓度掺杂/
    × 1016 cm–3
    金属电极层0.10
    Mg2Si接触层Wp0.15Np500
    Mg2Si吸收层Wa0.6—4Na0.1
    Si电荷层Wc0.1—0.3Nc6—14
    Si倍增层Wm1Nm0.01—1
    Si缓冲层Wb0.5Nb100
    Si衬底Ws3.5Ns1000
    下载: 导出CSV

    表 2  模拟计算中采用的各层基本参数

    Table 2.  The parameters of different layers in the simulation.

    参数Mg2Sic-Si[21]
    相对介电常数20[21]11.9
    电子迁移率/(cm2·V–1·S–1) 550[21]1350
    空穴迁移率/(cm2·V–1·S–1)70[15]500
    材料带隙/eV0.77[9,21]1.12
    导带有效态密度/cm–3 7.8 × 10182.8 × 1019
    价带有效态密度/cm–3 2.06 × 10191.04 × 1019
    电子亲和力/eV4.37[21,22]4.05
    下载: 导出CSV

    表 3  模拟结果与目前国际水平对比

    Table 3.  Comparison of simulation results with current international level.

    材料暗电流密度/(A·cm–2)光谱响应/(A·W–1)
    InGaAs5 × 10–4[26]1.2[26]
    InGaAs/InP7 × 10–10[26]
    HgCdTe/CdTe/Si0.007[26]
    HgCdTe/CdZnTe2.7 × 10–5[27]1.45[27]
    Mg2Si0.04[14,16]0.014[14,16]
    Mg2Si/Si-pn6 × 10–7[17]0.32[17]
    Mg2Si/Si-pin1 × 10–6[17]0.742[17]
    Mg2Si/Si-SACM3.6 × 10–525
    下载: 导出CSV
  • [1]

    莫秋燕, 赵彦立 2011 物理学报 60 072902Google Scholar

    Mo Q Y, Zhao Y L 2011 Acta Phys. Sin. 60 072902Google Scholar

    [2]

    Park S M, Grein C H 2019 J. Electron. Mater. 48 8163Google Scholar

    [3]

    Rogalski A 2005 Rep. Prog. Phys. 68 2267Google Scholar

    [4]

    Xu S J, Chua S J, Mei T, Wang X C, Zhang X H, Karunasiri G, Fan W J, Wang C H, Jiang J, Wang S, Xie X G 1998 Appl. Phys. Lett. 73 3153Google Scholar

    [5]

    Rogalski A 2002 Infrared. Phys. Technol. 43 187Google Scholar

    [6]

    Rogalski A 2011 Infrared. Phys. Technol. 54 136Google Scholar

    [7]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [8]

    LaBotz R 1963 J. Electrochem. Soc. 110 127Google Scholar

    [9]

    Kato T, Sago Y, Fujiwara H 2011 J. Appl. Phys. 110 063723Google Scholar

    [10]

    Borisenko V E 2000 Semiconducting Silicides (New York: Springer) pp137−179

    [11]

    Au-Yang M Y, Cohen M L 1969 Phys. Rev. 178 1358Google Scholar

    [12]

    Liao Y F, Fan M H, Xie Q, Xiao Q Q, Xie J, Yu H, Wang S L, Ma X Y 2018 Appl. Surf. Sci. 403 302Google Scholar

    [13]

    Janega P L, McCaffrey J, Landheer D, Buchanan M, Denhoff M, Mitchel D 1988 Appl. Phys. Lett. 53 2056Google Scholar

    [14]

    Udono H, Tajima H, Uchikoshi M, Itakura M 2015 Jpn. J. Appl. Phys. 54 07JB06Google Scholar

    [15]

    Udono H, Yamanaka Y, Uchikoshi M, Isshiki M 2013 J. Phys. Chem. Solids. 74 311Google Scholar

    [16]

    El-Amir A A M, Ohsawa T, Nabatame T, Ohia A, Wadaa Y, Nakamuraa M, Fua K, Shimamuraa K, Ohashia N 2019 Mater. Sci. Semicond. Process. 91 222Google Scholar

    [17]

    陈豪, 肖清泉, 谢泉, 王坤, 史娇娜 2019 材料导报 33 3358Google Scholar

    Chen H, Xiao Q Q, Xie Q, Wang K, Shi J N, 2019 Mater. Rep. 33 3358Google Scholar

    [18]

    Forrest S R, Kim O K, Smith R G 1982 Appl. Phys. Lett. 41 95Google Scholar

    [19]

    张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光 2020 物理学报 69 074204Google Scholar

    Zhang H Y, Wang L L, Wu C Y, Wang Y R, Yang L, Pang H F, Liu Q L, Guo X, Tang K, Zhang Z P, Wu G 2020 Acta Phys. Sin. 69 074204Google Scholar

    [20]

    Nishida K, Taguchi K, Matsumoto Y 1979 Appl. Phys. Lett. 35 251Google Scholar

    [21]

    Deng Q, Wang Z, Wang S, Shao G D 2017 Sol. Energy 158 654Google Scholar

    [22]

    Sekino K, Midonoya M, Udono H, Yamada Y Udono H 2011 Phys. Procedia 11 171Google Scholar

    [23]

    Martin A G 2008 Sol. Energy Mater. Sol. Cells 92 1305Google Scholar

    [24]

    Park C Y, Hyun K, Kang S G, Kim H M 1995 Appl. Phys. Lett. 67 3789Google Scholar

    [25]

    Smetona S, Matukas J, Palenskis V, Olechnovicius M, A. Kaminskas K, Mallard R 2004 Proceedings of SPIE-Photonics North 2004: Optical Components and Devices Ottawa, Canada, September 26–29, 2004 p834

    [26]

    谢天, 叶新辉, 夏辉, 李菊柱, 张帅君, 姜新洋, 邓伟杰, 王文静, 李玉莹, 刘伟伟, 李翔, 李天信 2020 红外与毫米波学报 39 0583Google Scholar

    Xie T, Ye X H, Xia H, Li J Z, Zhang S J, Jiang X Y, Deng W J, Wang W J, Li Y Y, Liu W W, Li X, Li T X 2020 J. Infrared Millim. W. 39 0583Google Scholar

    [27]

    Yuan H, Zhang J, Kim J, Meyer C, Laquindanum J, Kimchi J, Lei J 2018 Proceedings of SPIE -Infrared Sensors, Devices, and Applications VIII San Diego, United States, August 22–23, 2018 p107660 J-1

    [28]

    Wang Y D, Chen J, Xu J D, Li X Y 2018 Infrared Phys. Technol. 89 41Google Scholar

    [29]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第514−523页

    Sze S M, K. Ng K (translated by Geng L, Wu G J) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi’an: Xi’an Jiaotong University Press) pp514−523 (in Chinese)

    [30]

    Lee M J, Rucker H, Choi W Y 2012 IEEE Electron Device Lett. 33 80Google Scholar

  • [1] 王东智, 张益军, 李诗曼, 童泽昊, 唐嵩, 石峰, 焦岗成, 程宏昌, 富容国, 钱芸生, 曾玉刚. 532 nm响应增强的AlGaAs光电阴极. 物理学报, 2024, 73(11): 118503. doi: 10.7498/aps.73.20240253
    [2] 付正鸿, 李婷, 单美乐, 郭糠, 苟国庆. H对Mg2Si力学性能影响的第一性原理研究. 物理学报, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [3] 郭银, 舒碧芬, 汪婧, 杨晴川, 江景祥, 黄妍, 周正龙. 基于棱镜二次聚光的高倍聚光模组聚光特性与三结电池光谱响应匹配与优化. 物理学报, 2018, 67(10): 108801. doi: 10.7498/aps.67.20172778
    [4] 刘涛, 赵永蓬, 丁宇洁, 李小强, 崔怀愈, 姜杉. 毛细管放电类氖氩69.8 nm激光增益特性研究. 物理学报, 2017, 66(15): 155201. doi: 10.7498/aps.66.155201
    [5] 朱岩, 张新宇, 张素红, 马明臻, 刘日平, 田宏燕. Mg2Si化合物在静水压下的电子输运性能研究. 物理学报, 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [6] 柴向旭, 李富全, 王圣来, 冯斌, 朱启华, 刘宝安, 孙洵, 许心光. 氘含量对DKDP晶体横向受激拉曼散射增益系数的影响. 物理学报, 2015, 64(3): 034213. doi: 10.7498/aps.64.034213
    [7] 张益军, 甘卓欣, 张瀚, 黄帆, 徐源, 冯琤. 超高真空系统中GaAlAs光电阴极的重新铯化研究. 物理学报, 2014, 63(17): 178502. doi: 10.7498/aps.63.178502
    [8] 陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟. 变温条件下受激布里渊散射增益系数的实验测量. 物理学报, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [9] 乔建良, 常本康, 钱芸生, 高频, 王晓晖, 徐源. 负电子亲和势GaN真空面电子源研究进展. 物理学报, 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [10] 莫秋燕, 赵彦立. 光通信用雪崩光电二极管(APD)频率响应特性研究. 物理学报, 2011, 60(7): 072902. doi: 10.7498/aps.60.072902
    [11] 彭华, 王春雷, 李吉超, 王洪超, 王美晓. Mg2Si的电子结构和热电输运性质的理论研究. 物理学报, 2010, 59(6): 4123-4129. doi: 10.7498/aps.59.4123
    [12] 刘文宝, 赵德刚, 江德生, 刘宗顺, 朱建军, 张书明, 杨辉. 高阻氮化镓外延层的异常光吸收. 物理学报, 2010, 59(11): 8048-8051. doi: 10.7498/aps.59.8048
    [13] 乔建良, 常本康, 钱芸生, 杜晓晴, 张益军, 高频, 王晓晖, 郭向阳, 牛军, 高有堂. 负电子亲和势GaN光电阴极光谱响应特性研究. 物理学报, 2010, 59(5): 3577-3582. doi: 10.7498/aps.59.3577
    [14] 余志强, 谢泉, 肖清泉, 赵珂杰. Mg2Si晶体结构及消光特性的研究. 物理学报, 2009, 58(10): 6889-6893. doi: 10.7498/aps.58.6889
    [15] 胡建民, 吴宜勇, 钱勇, 杨德庄, 何世禹. GaInP/GaAs/Ge三结太阳电池的电子辐照损伤效应. 物理学报, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [16] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究. 物理学报, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [17] 徐向晏, 叶振华, 李志锋, 陆 卫. 中波HgCdTe双色红外探测器优化模拟计算. 物理学报, 2007, 56(5): 2882-2889. doi: 10.7498/aps.56.2882
    [18] 乔秀梅, 张国平. 瞬态电子碰撞激发类氖锗19.6nm X射线激光的理论研究. 物理学报, 2007, 56(9): 5248-5251. doi: 10.7498/aps.56.5248
    [19] 杨文正, 侯洵, 陈烽, 杨青. BRD96N光调制吸收增强现象的实验研究. 物理学报, 2004, 53(1): 296-300. doi: 10.7498/aps.53.296
    [20] 袁保红, 陈钟贤, 姜永远, 孙秀冬, 周忠祥, 姚凤凤. 光折变聚合物中斩波调制对二波耦合增益系数的增强效应. 物理学报, 2002, 51(7): 1512-1516. doi: 10.7498/aps.51.1512
计量
  • 文章访问数:  8111
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 修回日期:  2020-12-17
  • 上网日期:  2021-05-11
  • 刊出日期:  2021-05-20

/

返回文章
返回