搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向近原子尺度制造的光学测量精度极限分析

战海洋 邢飞 张利

引用本文:
Citation:

面向近原子尺度制造的光学测量精度极限分析

战海洋, 邢飞, 张利

Analysis of optical measurement precision limit for close-to-atomic scale manufacturing

Zhan Hai-Yang, Xing Fei, Zhang Li
PDF
HTML
导出引用
  • 纳米级乃至更高精度的测量是原子及近原子尺度制造技术发展的基础和保障. 光学测量具有精度高、测量范围广、测量直观等优点, 其对单个成像光斑中心的定位可达远超衍射极限的精度. 但由于光本身散粒噪声、探测器暗电流噪声等随机性的存在, 光学测量存在精度极限. 本文基于克拉美罗下界理论发展了可适用于任意强度分布像斑的精度极限计算方法, 并以典型艾里斑为例, 分析了成像过程中反映信噪比、能量集中度、计算方式的参数对定位精度极限的影响规律并给出提高精度的建议和结论. 对实验所得像斑进行了精度极限计算, 验证了所得结论对类似艾里斑的像斑的适用性. 研究为原子及近原子尺度制造过程中光学测量的应用和优化提供了分析方法和理论指导.
    Measurement technology with nanometer scale or higher level precision is the basis and guarantee for developing atomic and close-to-atomic scale manufacturing. Optical measurement has the advantages of high precision, wide range and real-time measurement. The precision of localizing a single imaging spot’s center is not limited by the diffraction limit and could reach nanometer scale. However, the shot noise of light and the dark current noise of the detector bring about a precision limit for optical measurement. Based on the Cramer-Rao lower bound theory, a precision limit estimation method for general imaging profiles is developed in this paper. Taking the typical Airy spot for example, the influences of the parameters such as signal-to-noise ratio, energy concentration and processing method on the positioning precision limit are analyzed, and suggestions and conclusions for improving the measurement precision are given. The precision limit of a laboratory imaging spot is calculated, which verifies that the conclusions are also suitable for the imaging profiles similar to the Airy spot. The research provides the analytical method and theoretical guidance for the application and optimization of optical measurement in atomic and close-to-atomic scale manufacturing.
      通信作者: 邢飞, xingfei@mail.tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFB0501201)和国家重大科研仪器研制项目(批准号: 51827806)资助的课题
      Corresponding author: Xing Fei, xingfei@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0501201) and the National Project for Research and Development of Major Scientific Instruments (Grant No. 51827806)
    [1]

    Fang F Z, Zhang N, Guo D M, Kornel E, Benny C, Liu K, Kazuya Y 2019 Int. J. Extrem. Manuf. 1 012001Google Scholar

    [2]

    房丰洲 2020 中国机械工程 537 5

    Fang F Z 2020 China Mech. Eng. 537 5

    [3]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [4]

    Manley S, Gillette J M, Patterson G H, Shroff H, Hess H F, Betzig E, Lippincott-Schwartz J 2008 Nat. Methods 5 155Google Scholar

    [5]

    Patterson G, Davidson M, Manley S, Lippincott-Schwartz J 2010 Annu. Rev. Phys. Chem. 61 345Google Scholar

    [6]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749Google Scholar

    [7]

    Schmidt R, Wurm C A, Punge A, Egner A, Jakobs S, Hell S W 2009 Nano Lett. 9 2508Google Scholar

    [8]

    Folling J, Bossi M, Bock H, Medda R, Wurm C A, Hein B, Jakobs S, Eggeling C, Hell S W 2008 Nat. Methods 5 943Google Scholar

    [9]

    Hess S T, Gould T J, Gudheti M V, Maas S A, Mills K D, Zimmerberg J 2007 Proc. Natl. Acad. Sci. 104 17370Google Scholar

    [10]

    Shroff H, Galbraith C G, Galbraith J A, Betzig E 2008 Nat. Methods 5 417Google Scholar

    [11]

    Yildiz A, Forkey J N, McKinney S A, Ha T, Goldman Y E, Selvin P R 2003 Science 300 2061Google Scholar

    [12]

    Hidaka Y, Ishikawa M 2012 US Patent 8 223 345

    [13]

    Shaklan S, Sharman M C, Pravdo S H 1995 Appl. Opt. 34 6672Google Scholar

    [14]

    Shao M, Nemati B, Zhai R, Goullioud R, Malbet F, Leger A 2011 Proc. SPIE. 8151 81510VGoogle Scholar

    [15]

    Malbet F, Crouzier A, Leger A, Shao M, Goullioud R, Lagage P, Delpech M 2013 Proc. SPIE 8864 88641DGoogle Scholar

    [16]

    Joonhyung K, Jeawan H, Yong-Seok K, Dong-Youn L, Kyumin L, Sang-min L, Sang-il P 2003 Rev. Sci. Instrum. 74 4378Google Scholar

    [17]

    Wang Y L, Wang H M, Bi S S 2014 AIP Adv. 4 057130Google Scholar

    [18]

    EMVA https://www.emva.org/wp-content/uploads/EMVA1288-3.1 a.pdf [2020-11-15]

    [19]

    Winick K A, 1986 J. Opt. Soc. Am. A 3 1809Google Scholar

    [20]

    Wang Y L, Li X L, Bi S S, Zhu X F, Liu J H 2017 Meas. Sci. Technol. 28 015402Google Scholar

    [21]

    Fisher R A 1922 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 222 309

    [22]

    Rao C R 1992 Breakthroughs in Statistics (New York: Springer) p235

    [23]

    Rao C R 1947 Math. Proc. Camb. Philos. Soc. 43 280Google Scholar

    [24]

    Janesick J, Klaasen K, Elliott T 1985 Proc. SPIE 570 7Google Scholar

  • 图 1  艾里斑的光强分布函数及相应的像素灰度响应示例

    Fig. 1.  Intensity function of an Airy spot and its corresponding pixel response.

    图 2  精度极限-像素相位曲面 (a) 中心强度为400, 暗电流噪声为0; (b) 中心强度为400, 暗电流噪声为25

    Fig. 2.  Relationship of the precision limit to the x and y pixel phase: (a) The central intensity is 400, the dark current noise is 0; (b) the central intensity is 400, the dark current noise is 25.

    图 3  y像素相位为0.5时的精度极限-x像素相位曲线  (a) 中心强度为400, 暗电流噪声分别取0, 25, 100, 400; (b) 暗电流噪声为400, 中心强度分别取400, 800, 1600, 3200

    Fig. 3.  Relationship of the precision limit and the x pixel phase when the y pixel phase is 0.5: (a) The central intensity is 400, the dark current noise is 0, 25, 100, 400, respectively; (b) the dark current noise is 400, the central intensity is 400, 800, 1600, 3200, respectively.

    图 4  精度极限-像素相位曲面 (a) F数为2; (b) F数为8

    Fig. 4.  Relationship of the precision limit to the x and y pixel phase: (a) The F of the optical system is 2; (b) the F of the optical system is 8.

    图 5  y像素相位为0.5时的精度极限-x像素相位曲线

    Fig. 5.  Relationship of the precision limit and the x pixel phase when the y pixel phase is 0.5.

    图 6  精度极限-像素相位曲面 (a) 计算窗口为3 × 3; (b) 计算窗口为5 × 5

    Fig. 6.  Relationship of the precision limit to the x and y pixel phase: (a) The size of the window used for localization is 3 × 3; (b) the size of the window is 5 × 5.

    图 7  实验平台

    Fig. 7.  Experiment platform.

    图 8  实验室像斑的精度极限-x像素相位曲线 (a) 能量较集中强度分布; (b) 能量较发散强度分布

    Fig. 8.  Relationship of the precision limit and the x pixel phase for laboratory obtained image spots: (a) The precision limit for a energy concentrated spot; (b) the precision limit for a spot with lower energy concentration.

    表 1  不同能量和噪声条件下σallΔstd结果(保留小数点后四位)

    Table 1.  Results of σall and Δstd under different levels of spot energy and noise.

    σall (Δstd)/pixels
    $\sigma _{\rm{d}}^{\rm{2}}$ = 0$\sigma _{\rm{d}}^{\rm{2}}$ = 25$\sigma _{\rm{d}}^{\rm{2}}$ = 100$\sigma _{\rm{d}}^{\rm{2}}$ = 400
    ${I_{\rm{0}}} = {\rm{400}}$0.0125 (0.0001)0.0136 (0.0003)0.0157 (0.0011)0.0217 (0.0033)
    ${I_{\rm{0}}} = {\rm{800}}$0.0088 (0.0001)0.0093 (0.0001)0.0102 (0.0004)0.0127 (0.0014)
    ${I_{\rm{0}}} = {\rm{1600}}$0.0062 (0.0001)0.0064 (0.0000)0.0068 (0.0001)0.0079 (0.0006)
    ${I_{\rm{0}}} = {\rm{3200}}$0.0044 (0.0000)0.0045 (0.0000)0.0046 (0.0000)0.0051 (0.0002)
    下载: 导出CSV

    表 2  不同能量集中度条件下精度极限结果

    Table 2.  Results of the precision limit under different levels of spot energy concentration

    RF = 0.25RF = 0.50 RF = 1.00 RF = 2.00
    σall/pixels0.03350.01920.01360.0247
    Δstd/pixels0.02110.01220.00030.0002
    最优精度/pixels0.0033 (边缘)0.0065 (边缘)0.0130 (边缘)0.0244 (边缘)
    最差精度/pixels0.0803 (中心)0.0566 (中心)0.0139 (中心)0.0250 (中心)
    衍射极限/pixels0.30500.61001.22002.4400
    下载: 导出CSV
  • [1]

    Fang F Z, Zhang N, Guo D M, Kornel E, Benny C, Liu K, Kazuya Y 2019 Int. J. Extrem. Manuf. 1 012001Google Scholar

    [2]

    房丰洲 2020 中国机械工程 537 5

    Fang F Z 2020 China Mech. Eng. 537 5

    [3]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [4]

    Manley S, Gillette J M, Patterson G H, Shroff H, Hess H F, Betzig E, Lippincott-Schwartz J 2008 Nat. Methods 5 155Google Scholar

    [5]

    Patterson G, Davidson M, Manley S, Lippincott-Schwartz J 2010 Annu. Rev. Phys. Chem. 61 345Google Scholar

    [6]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749Google Scholar

    [7]

    Schmidt R, Wurm C A, Punge A, Egner A, Jakobs S, Hell S W 2009 Nano Lett. 9 2508Google Scholar

    [8]

    Folling J, Bossi M, Bock H, Medda R, Wurm C A, Hein B, Jakobs S, Eggeling C, Hell S W 2008 Nat. Methods 5 943Google Scholar

    [9]

    Hess S T, Gould T J, Gudheti M V, Maas S A, Mills K D, Zimmerberg J 2007 Proc. Natl. Acad. Sci. 104 17370Google Scholar

    [10]

    Shroff H, Galbraith C G, Galbraith J A, Betzig E 2008 Nat. Methods 5 417Google Scholar

    [11]

    Yildiz A, Forkey J N, McKinney S A, Ha T, Goldman Y E, Selvin P R 2003 Science 300 2061Google Scholar

    [12]

    Hidaka Y, Ishikawa M 2012 US Patent 8 223 345

    [13]

    Shaklan S, Sharman M C, Pravdo S H 1995 Appl. Opt. 34 6672Google Scholar

    [14]

    Shao M, Nemati B, Zhai R, Goullioud R, Malbet F, Leger A 2011 Proc. SPIE. 8151 81510VGoogle Scholar

    [15]

    Malbet F, Crouzier A, Leger A, Shao M, Goullioud R, Lagage P, Delpech M 2013 Proc. SPIE 8864 88641DGoogle Scholar

    [16]

    Joonhyung K, Jeawan H, Yong-Seok K, Dong-Youn L, Kyumin L, Sang-min L, Sang-il P 2003 Rev. Sci. Instrum. 74 4378Google Scholar

    [17]

    Wang Y L, Wang H M, Bi S S 2014 AIP Adv. 4 057130Google Scholar

    [18]

    EMVA https://www.emva.org/wp-content/uploads/EMVA1288-3.1 a.pdf [2020-11-15]

    [19]

    Winick K A, 1986 J. Opt. Soc. Am. A 3 1809Google Scholar

    [20]

    Wang Y L, Li X L, Bi S S, Zhu X F, Liu J H 2017 Meas. Sci. Technol. 28 015402Google Scholar

    [21]

    Fisher R A 1922 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 222 309

    [22]

    Rao C R 1992 Breakthroughs in Statistics (New York: Springer) p235

    [23]

    Rao C R 1947 Math. Proc. Camb. Philos. Soc. 43 280Google Scholar

    [24]

    Janesick J, Klaasen K, Elliott T 1985 Proc. SPIE 570 7Google Scholar

  • [1] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造. 物理学报, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [2] 高鸿钧. “原子制造:基础研究与前沿探索”专题编者按. 物理学报, 2021, 70(2): 020101. doi: 10.7498/aps.70.020101
    [3] 吉建伟, 山村和也, 邓辉. 面向单晶SiC原子级表面制造的等离子体辅助抛光技术. 物理学报, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [4] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [5] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征. 物理学报, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [6] 戴李知, 胡晓雪, 刘鹏, 田野. DNA折纸结构介导的多尺度纳米结构精准制造. 物理学报, 2021, 70(6): 068201. doi: 10.7498/aps.70.20201689
    [7] 郭秦敏, 秦志辉. 气相沉积技术在原子制造领域的发展与应用. 物理学报, 2021, 70(2): 028101. doi: 10.7498/aps.70.20201436
    [8] 李圣凯, 郝卿, 彭天欢, 陈卓, 谭蔚泓. 核酸-金属复合物及其在原子制造领域的应用. 物理学报, 2021, 70(2): 028102. doi: 10.7498/aps.70.20201430
    [9] 杨蓓, 李茜, 柳华杰, 樊春海. 面向原子制造的框架核酸研究进展. 物理学报, 2021, 70(2): 026201. doi: 10.7498/aps.70.20201437
    [10] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [11] 郑盟锟, 尤力. 能够突破标准量子极限的原子双数态的制备研究. 物理学报, 2018, 67(16): 160303. doi: 10.7498/aps.67.20181029
    [12] 崔立红, 赵维宁, 颜昌翔. 高斯光束与谐振腔基模模式光路谐振匹配的分析与校准. 物理学报, 2015, 64(22): 224211. doi: 10.7498/aps.64.224211
    [13] 崔立红, 颜昌翔, 赵维宁, 张新洁, 胡春辉. 失调多腔镜型环形谐振腔共轭光轴位置精度分析. 物理学报, 2015, 64(22): 224210. doi: 10.7498/aps.64.224210
    [14] 花世群, 骆英. 发光光弹性涂层折射率测量方法. 物理学报, 2013, 62(5): 057801. doi: 10.7498/aps.62.057801
    [15] 李彦超, 章亮, 杨彦玲, 高龙, 徐博, 王春晖. 多光束激光外差高精度测量玻璃厚度的方法. 物理学报, 2009, 58(8): 5473-5478. doi: 10.7498/aps.58.5473
    [16] 郑森林, 陈 君, 林 强. 光脉冲序列对三能级原子重力仪测量精度的影响. 物理学报, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [17] 黄湘友. 氢原子波函数的经典极限分析. 物理学报, 1991, 40(10): 1553-1561. doi: 10.7498/aps.40.1553
    [18] 谢建平, 邱焰辉, 明海, 李川奇, 牛亚平, 奚立峰, 大园成夫. 金属光学性质对高精度丝径测量中偏振效应的影响. 物理学报, 1990, 39(11): 1830-1834. doi: 10.7498/aps.39.1830
    [19] 谢建平, 邢晓正, 李传奇, 朱懋胜, 大园成夫. 高精度丝径测量中的偏振效应. 物理学报, 1989, 38(3): 399-406. doi: 10.7498/aps.38.399
    [20] 王兆申, 曹永君. 准光学接收系统隔离度的理论极限问题. 物理学报, 1983, 32(10): 1323-1327. doi: 10.7498/aps.32.1323
计量
  • 文章访问数:  7112
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 修回日期:  2020-12-21
  • 上网日期:  2021-03-11
  • 刊出日期:  2021-03-20

/

返回文章
返回