搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝基薄膜忆阻器作为感觉神经系统的习惯化特性

朱玮 郭恬恬 刘兰 周荣荣

引用本文:
Citation:

铝基薄膜忆阻器作为感觉神经系统的习惯化特性

朱玮, 郭恬恬, 刘兰, 周荣荣

Al-based memristor applied to habituation sensory nervous system

Zhu Wei, Guo Tian-Tian, Liu Lan, Zhou Rong-Rong
PDF
HTML
导出引用
  • 感觉神经系统可在外界刺激与生物体反应之间建立联系. 感觉神经系统中的最小单位神经元可直接将外界刺激传递至中枢神经, 再由中枢神经通过控制和调节生物体对外界刺激作出反应. 神经突触连接了相邻神经元进行脉冲信息传递功能. 习惯化是神经突触在信息传递中过滤外界无关信息时的一个基本特性, 可以让感觉神经系统更快速地适应外界环境变化. 忆阻器模拟神经突触功能在近年获得进展, 然而针对以忆阻器为基础的具有习惯化特性的神经突触以及完整神经系统的研究相对匮乏. 本文利用磁控溅射技术制备了厚度约为40 nm且含铝纳米颗粒的氮化铝薄膜忆阻器, 并发现这种结构忆阻器对于重复的外界刺激有明显的习惯化行为, 该行为与感觉神经系统的习惯化特性极为相似. 若将这种具有习惯化的神经突触与感觉神经元串联, 可形成LIF (leaky integrate-and-fire)生物模型模拟完整的神经系统行为, 也为忆阻器在第三代神经网络(脉冲神经网络)中的应用提供理论参考.
    Sensory nervous system (SNS) can build the connections between organism and outside environment. Both of synapse and neuron are cornerstones of human biological system, which can transmit information to human brain and receive the feedback from central nervous system. Finally, the corresponding responses to the external information are performed. However, the information from outside environment should be received by SNS all the time. It is important for organism to distinguish between the stimuli that required attention and those that are irrelevant and no need to response. Habituation is one of fundamental properties of SNS to form such discrimination. It plays an important role for organism to adapt the environment and filter out irrelevantly repetitive information. In this study, an nc-Al/AlN structured based memristor with a thickness of 40 nm is produced by the sputtering method. The top and bottom electrode are of Ag and Al respectively, forming a sandwiched structure device. Habituation is found in the nc-Al/AlN thin film based memristor which has been rarely reported before. Both of current-voltage (I-V ) and pulse voltage measurement are executed on this device at room temperature. In the I-V measurement, the memristor shows unipolar switching properties which may be caused by conductive filament connecting or breaking. In the voltage pulse measurement, pulse interval is an important factor to affect memristor conduction. If the pulse interval is quite large, that is, the pulse frequency is low, the memristor will get maximized conduction very slow or in infinity time. If choosing an appropriate pulse voltage and interval value, the habituation will be observed after several stimulus pulses. The larger pulse interval needs more pulse numbers to cause memristor to be habituated, but which results in higher device conduction finally. A habituation memristor can act as synapse and connect with neuron to build the whole leaky integrate-and-fire (LIF) model which is quite often used in circuit design to mimic a real organism neuron behavior. In this model, neuron could be fired only when it gets enough stimuli from previous neuron. If the stimulus pulse frequency is low, there is observed no firing phenomenon in this case. In this study, the input signal of LIF model is a continuous voltage pulse with an amplitude of 1.2 V and interval of 5 ms. Such an input signal will be transmitted by habituation memristor to a neuron electronic element. The output signal is the pulse generated by neuron when it is fired. According to the results, the frequency of output signal is smaller than input information which complies with the basic characteristics of habituation. It is supposed that organisms should not response to this repetitive pulse any more and it will make neuron have more capabilities to handle following information.
      通信作者: 朱玮, wzhu@chd.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61704010)和陕西省自然科学基金(批准号: 2020JQ-341)资助的课题
      Corresponding author: Zhu Wei, wzhu@chd.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61704010) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JQ-341)
    [1]

    Yamins D L, DiCarlo J J 2016 Nat. Neurosci. 19 356Google Scholar

    [2]

    Wan Q, Jiang X Y, Andreea M N, Lu S G, Kimberly S M, Thomas W A 2012 Nat. Neurosci. 15 1144Google Scholar

    [3]

    Thompson R F, Spencer W A 1966 Psychol. Rev. 73 16Google Scholar

    [4]

    Rankin C H, Abrams T, Barry R J, Bhatnagar S, Clayton D F, Colombo J, Coppola G, Geyer M A, Glanzman D L, Marsland S, McSweeney F K, Wilson D A, Wu C F, Thompson R F 2009 Neurobiol. Learn. Mem. 92 135Google Scholar

    [5]

    Fu T D, Liu X M, Gao H Y, Ward J E, Liu X R, Yin B, Wang Z R, Zhuo Y, David J F Walker, Joshua Yang J, Chen J H, Derek R L, Yao J 2020 Nat. Commun. 11 1861Google Scholar

    [6]

    Zhong Y N, Wang T, Gao X, Xu J L, Wang S D 2018 Adv. Funct. Mater. 28 1800854Google Scholar

    [7]

    Wan C J, He Y L, Jiang S S, Li J F, Wan Q 2020 Adv. Electron. Mater. 26 389Google Scholar

    [8]

    刘益春, 林亚, 王中强, 徐海阳 2019 物理学报 68 168504Google Scholar

    Liu Y C, Lin Y, Wang Z Q, Xu H Y 2019 Acta Phys. Sin. 68 168504Google Scholar

    [9]

    邵楠, 张盛兵, 邵舒渊 2016 物理学报 65 128503Google Scholar

    Shao N, Zhang S B, Shao S Y 2016 Acta Phys. Sin. 65 128503Google Scholar

    [10]

    Zhu X J, Wang Q W, Wei D L 2020 Nat. Commun. 11 2439Google Scholar

    [11]

    Dang B J, Wu Q T, Song F, Sun J, Yang M, Ma X H, Wang H, Hao Y 2018 Nanoscale 10 20089Google Scholar

    [12]

    Yang X, Fang Y C, Yu Z Z, Wang Z W, Zhang T, Yin M H, Lin M, Yang Y C, Cai Y M, Huang R 2016 Nanoscale 8 18897Google Scholar

    [13]

    Shi Y Y, Liang X H, Yuan B, Victoria C, Li H T, Hui F, Yu Z C W, Yuan F, Eric P, Philip W, Mario L 2018 Nat. Eletron. 1 458Google Scholar

    [14]

    Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J, He Q 2020 Nature 577 641Google Scholar

    [15]

    Writam B, Liu Q, Lv H B, Long S B, Liu M 2017 Nanoscale 9 14442Google Scholar

    [16]

    Wu Q T, Wang H, Luo Q, Writam B, Cao J C, Zhang X M, Wu F C, Liu Q, Li L, Liu M 2018 Nanoscale 10 5875Google Scholar

    [17]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. 83 1Google Scholar

    [18]

    Gao S, Yi X H, Shang J 2019 Chem. Soc. Rev. 48 1531Google Scholar

    [19]

    Yang X, Wang C, Shang J, Zhang C C, Tan H W, Yi X H, Pan L, Zhang W B, Fan F, Liu Y Q, Chen Y, Liu G, Li R W 2016 RSC Adv. 6 25179Google Scholar

    [20]

    Ting Y, Chen J Y, Huang C W, Huang T K, Hsieh C Y, Wu W W 2018 Small 14 1703153Google Scholar

    [21]

    Ella G 2014 Semicond. Sci. Technol. 29 104004Google Scholar

    [22]

    Li C, Hu M, Li Y N, Jiang H, Ge N, Eric M, Zhang J M, Song W H, Noraica D, Catherin E G, Li Z Y, Strachan J P, Lin P, Wang Z R, Barnell M, Wu Q, Stanley Williams R, Joshua Yang J, Xia Q F 2018 Nat. Electron. 1 52Google Scholar

    [23]

    Chen Y R, Song H, Jiang H, Li Z M, Zhang Z W, Sun X J, Li D B, Miao G Q 2014 Appl. Phys. Lett. 105 193502Google Scholar

    [24]

    Kim H D, An H M, SeI Y, Kim T G 2011 IEEE Electron Device Lett. 32 1125Google Scholar

    [25]

    Chen C, Gao S, Tang G S, Fu H D, Wang G Y, Song C, Zheng F, Pan F 2013 ACS Appl. Mater. Interfaces 5 1793Google Scholar

    [26]

    Lin C C, Liou H Y, Chu S Y, Huang C Y, Hong C S 2018 Cryst. Eng. Commun. 20 6230Google Scholar

    [27]

    Zhu W, Chen T P, Liu Y, Fung S 2012 J. Appl. Phys. 112 063706Google Scholar

    [28]

    Zhu W, Chen T P, Yang M, Liu Y, Fung S 2012 IEEE Trans. Electron Devices 59 2363Google Scholar

    [29]

    Gilmer D C, Veksler D, Kirsch P, Vandelli L, Padovani A, Larcher L, McKenna K, Shluger A, Iglesias Porti V M, Nafría M 2011 J. Appl. Phys. 110 124518Google Scholar

    [30]

    Umberto C, Ludovic G, Attilio, Karl O, Alexis F, Andreas S, Christophe D, Olivier R, Hugo B, Malgorzata J, Wilfried V 2014 Nano Lett. 14 2401Google Scholar

    [31]

    Pablo S, Julien T, Benoit C, Etienne J, Marie Paule B, Federico T, Marcelo R, Laurent C 2017 Adv. Funct. Mater. 27 1604740Google Scholar

    [32]

    Yang J Q, Wang R P, Ren Y, Mao J Y, Wang Z P, Zhou Y, Han S T 2020 Adv. Mater. 2020 2003610Google Scholar

    [33]

    Gao S, Zeng F, Chen C, Tang G S, Lin Y S, Zheng Z F, Song C, Pan F 2013 Nanotechnology 24 335201Google Scholar

    [34]

    Gao S, Chen C, Zhai Z, Liu Y, Lin S, Li S, Lu S, Wang G, Song C, Zeng F, Pan F 2014 Appl. Phys. Lett. 6 063504Google Scholar

    [35]

    Corinne T, Ramakrishnan I, Vilas M, Nathan G, David F, Jim B, Aaron S, Nicholas C, Zeng H K, Michael H, Christof K, Stefan M 2018 Nat. Commun. 9 709Google Scholar

    [36]

    Chatterjee D, Kottantharayil A 2019 IEEE Electron Device Lett. 40 1301Google Scholar

  • 图 1  铝基薄膜的TEM和XPS测试 (a) XPS测试(BE, 结合能); (b) TEM测试

    Fig. 1.  The TEM and XPS results of nc-Al embedded AlN thin film: (a) XPS result (BE, binding energy); (b) TEM result.

    图 2  忆阻器的电学特性和阻变原理 (a) 铝基薄膜忆阻器I-V测试显示单极(unipolar)特性; (b) 忆阻器的I-V测试在低电压时的幂律拟合; (c) HRS下器件内导电丝处于断开状态, LRS下器件内导电丝处于连接状态; (d) 器件HRS下的电荷传导机制

    Fig. 2.  Electrical and resistive switching theory of memristor: (a) The I-V characteristic of memeristor shows unipolar property; (b) the power-law fitting of memeristor I-V measurement at low voltage region; (c) conductive filaments broken at HRS and connected at LRS; (d) conduction mechanisms of memristor at HRS.

    图 3  忆阻器的脉冲电压测试显示了习惯化特性 (a)间隔越大导电率到达最大值所需的脉冲数量越多; 脉冲电压越大导电率到达最大值所需的脉冲数量越少, 如插图所示; (b)脉冲电压1.2 V, 间隔2 ms时器件感知和习惯化测试; (c) 脉冲电压1.2 V, 间隔5 ms时器件感知和习惯化测试; (d) 脉冲电压1.2 V, 间隔20 ms时器件感知和习惯化测试

    Fig. 3.  Memristor exhibit habituation property in voltage pulse measurement: (a) The longer pulse interval need more pulse number to cause memristor conduction maximized and the larger pulse amplitude need less pulse number to cause memristor conduction maximized, as shown in inset figure; (b) learning and habituation measurement of memristor with pulse voltage 1.2 V and pulse interval 2 ms; (c) learning and habituation measurement of memristor with pulse voltage 1.2 V and pulse interval 5 ms; (d) learning and habituation measurement of memristor with pulse voltage 1.2 V and pulse interval 20 ms.

    图 4  器件引起习惯化所需脉冲数量与脉冲间隔和脉冲电压幅值的关系 (a) 固定脉冲幅值和宽度, 脉冲间隔越大引起器件习惯化特性所需的脉冲数量越多, 负向脉冲比正向脉冲需要更多的脉冲数量引起器件习惯化; (b) 固定脉冲间隔和宽度, 脉冲电压越大引起器件习惯化特性所需的脉冲数量越少, 负向脉冲比正向脉冲需要更多的脉冲数量引起器件习惯化

    Fig. 4.  Relationship of the number of pulses required for device habituation to the pulse interval and pulse voltage: (a) The relationship between the number of pulses required for device habituation and pulse interval with fixed pulse voltage and width; (b) the relationship between the number of pulses required for device habituation and pulse voltage with fixed pulse interval and width.

    图 5  感觉神经系统的工作原理[10] (a) 神经系统结构图; (b) 神经系统的LIF模型; (c)频率较低的输入信号不能引起神经元的激发; (d) 频率较高的输入信号引起神经元激发

    Fig. 5.  Working principle diagram of sensory nervous system (SNS)[10]: (a) Structure of SNS; (b) LIF model of SNS; (c) no firing observed with low frequency input pulse signal; (d) firing of neuron observed with high frequency input pulse signal.

    图 6  神经系统LIF模型习惯化特性测试 (a) 含有习惯化特性忆阻器的LIF模型图; (b) 连续脉冲测试, 展示了习惯化特性对完整神经系统的影响

    Fig. 6.  Habituation measurement of LIF model: (a) LIF model structure with habituation memristor; (b) the effect of habituation memristor in LIF model with continuous pulse stimuli.

  • [1]

    Yamins D L, DiCarlo J J 2016 Nat. Neurosci. 19 356Google Scholar

    [2]

    Wan Q, Jiang X Y, Andreea M N, Lu S G, Kimberly S M, Thomas W A 2012 Nat. Neurosci. 15 1144Google Scholar

    [3]

    Thompson R F, Spencer W A 1966 Psychol. Rev. 73 16Google Scholar

    [4]

    Rankin C H, Abrams T, Barry R J, Bhatnagar S, Clayton D F, Colombo J, Coppola G, Geyer M A, Glanzman D L, Marsland S, McSweeney F K, Wilson D A, Wu C F, Thompson R F 2009 Neurobiol. Learn. Mem. 92 135Google Scholar

    [5]

    Fu T D, Liu X M, Gao H Y, Ward J E, Liu X R, Yin B, Wang Z R, Zhuo Y, David J F Walker, Joshua Yang J, Chen J H, Derek R L, Yao J 2020 Nat. Commun. 11 1861Google Scholar

    [6]

    Zhong Y N, Wang T, Gao X, Xu J L, Wang S D 2018 Adv. Funct. Mater. 28 1800854Google Scholar

    [7]

    Wan C J, He Y L, Jiang S S, Li J F, Wan Q 2020 Adv. Electron. Mater. 26 389Google Scholar

    [8]

    刘益春, 林亚, 王中强, 徐海阳 2019 物理学报 68 168504Google Scholar

    Liu Y C, Lin Y, Wang Z Q, Xu H Y 2019 Acta Phys. Sin. 68 168504Google Scholar

    [9]

    邵楠, 张盛兵, 邵舒渊 2016 物理学报 65 128503Google Scholar

    Shao N, Zhang S B, Shao S Y 2016 Acta Phys. Sin. 65 128503Google Scholar

    [10]

    Zhu X J, Wang Q W, Wei D L 2020 Nat. Commun. 11 2439Google Scholar

    [11]

    Dang B J, Wu Q T, Song F, Sun J, Yang M, Ma X H, Wang H, Hao Y 2018 Nanoscale 10 20089Google Scholar

    [12]

    Yang X, Fang Y C, Yu Z Z, Wang Z W, Zhang T, Yin M H, Lin M, Yang Y C, Cai Y M, Huang R 2016 Nanoscale 8 18897Google Scholar

    [13]

    Shi Y Y, Liang X H, Yuan B, Victoria C, Li H T, Hui F, Yu Z C W, Yuan F, Eric P, Philip W, Mario L 2018 Nat. Eletron. 1 458Google Scholar

    [14]

    Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J, He Q 2020 Nature 577 641Google Scholar

    [15]

    Writam B, Liu Q, Lv H B, Long S B, Liu M 2017 Nanoscale 9 14442Google Scholar

    [16]

    Wu Q T, Wang H, Luo Q, Writam B, Cao J C, Zhang X M, Wu F C, Liu Q, Li L, Liu M 2018 Nanoscale 10 5875Google Scholar

    [17]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. 83 1Google Scholar

    [18]

    Gao S, Yi X H, Shang J 2019 Chem. Soc. Rev. 48 1531Google Scholar

    [19]

    Yang X, Wang C, Shang J, Zhang C C, Tan H W, Yi X H, Pan L, Zhang W B, Fan F, Liu Y Q, Chen Y, Liu G, Li R W 2016 RSC Adv. 6 25179Google Scholar

    [20]

    Ting Y, Chen J Y, Huang C W, Huang T K, Hsieh C Y, Wu W W 2018 Small 14 1703153Google Scholar

    [21]

    Ella G 2014 Semicond. Sci. Technol. 29 104004Google Scholar

    [22]

    Li C, Hu M, Li Y N, Jiang H, Ge N, Eric M, Zhang J M, Song W H, Noraica D, Catherin E G, Li Z Y, Strachan J P, Lin P, Wang Z R, Barnell M, Wu Q, Stanley Williams R, Joshua Yang J, Xia Q F 2018 Nat. Electron. 1 52Google Scholar

    [23]

    Chen Y R, Song H, Jiang H, Li Z M, Zhang Z W, Sun X J, Li D B, Miao G Q 2014 Appl. Phys. Lett. 105 193502Google Scholar

    [24]

    Kim H D, An H M, SeI Y, Kim T G 2011 IEEE Electron Device Lett. 32 1125Google Scholar

    [25]

    Chen C, Gao S, Tang G S, Fu H D, Wang G Y, Song C, Zheng F, Pan F 2013 ACS Appl. Mater. Interfaces 5 1793Google Scholar

    [26]

    Lin C C, Liou H Y, Chu S Y, Huang C Y, Hong C S 2018 Cryst. Eng. Commun. 20 6230Google Scholar

    [27]

    Zhu W, Chen T P, Liu Y, Fung S 2012 J. Appl. Phys. 112 063706Google Scholar

    [28]

    Zhu W, Chen T P, Yang M, Liu Y, Fung S 2012 IEEE Trans. Electron Devices 59 2363Google Scholar

    [29]

    Gilmer D C, Veksler D, Kirsch P, Vandelli L, Padovani A, Larcher L, McKenna K, Shluger A, Iglesias Porti V M, Nafría M 2011 J. Appl. Phys. 110 124518Google Scholar

    [30]

    Umberto C, Ludovic G, Attilio, Karl O, Alexis F, Andreas S, Christophe D, Olivier R, Hugo B, Malgorzata J, Wilfried V 2014 Nano Lett. 14 2401Google Scholar

    [31]

    Pablo S, Julien T, Benoit C, Etienne J, Marie Paule B, Federico T, Marcelo R, Laurent C 2017 Adv. Funct. Mater. 27 1604740Google Scholar

    [32]

    Yang J Q, Wang R P, Ren Y, Mao J Y, Wang Z P, Zhou Y, Han S T 2020 Adv. Mater. 2020 2003610Google Scholar

    [33]

    Gao S, Zeng F, Chen C, Tang G S, Lin Y S, Zheng Z F, Song C, Pan F 2013 Nanotechnology 24 335201Google Scholar

    [34]

    Gao S, Chen C, Zhai Z, Liu Y, Lin S, Li S, Lu S, Wang G, Song C, Zeng F, Pan F 2014 Appl. Phys. Lett. 6 063504Google Scholar

    [35]

    Corinne T, Ramakrishnan I, Vilas M, Nathan G, David F, Jim B, Aaron S, Nicholas C, Zeng H K, Michael H, Christof K, Stefan M 2018 Nat. Commun. 9 709Google Scholar

    [36]

    Chatterjee D, Kottantharayil A 2019 IEEE Electron Device Lett. 40 1301Google Scholar

  • [1] 王梦蛟, 杨琛, 贺少波, 李志军. 一种新型复合指数型局部有源忆阻器耦合的Hopfield神经网络. 物理学报, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888
    [2] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [3] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [4] 武长春, 周莆钧, 王俊杰, 李国, 胡绍刚, 于奇, 刘洋. 基于忆阻器的脉冲神经网络硬件加速器架构设计. 物理学报, 2022, 71(14): 148401. doi: 10.7498/aps.71.20220098
    [5] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [6] 朱佳雪, 张续猛, 王睿, 刘琦. 面向神经形态感知和计算的柔性忆阻器基脉冲神经元. 物理学报, 2022, 71(14): 148503. doi: 10.7498/aps.71.20212323
    [7] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [8] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [9] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [10] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [11] 闫登卫, 王丽丹, 段书凯. 基于忆阻器的多涡卷混沌系统及其脉冲同步控制. 物理学报, 2018, 67(11): 110502. doi: 10.7498/aps.67.20180025
    [12] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [13] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [14] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [15] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [16] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [17] 丁炯, 张宏, 童勤业. 蝙蝠听觉神经系统如何在复杂环境中识别昆虫. 物理学报, 2012, 61(15): 150505. doi: 10.7498/aps.61.150505
    [18] 张宏, 刘淑芳, 钱鸣奇, 童勤业. 神经系统的简并性与序空间编码分析. 物理学报, 2009, 58(10): 7322-7329. doi: 10.7498/aps.58.7322
    [19] 张 宏, 方路平, 童勤业. 海豚等动物神经系统处理多普勒信号的一种可能性方案. 物理学报, 2007, 56(12): 7339-7345. doi: 10.7498/aps.56.7339
    [20] 彭建华, 于洪洁. 神经系统中随机和混沌感知信号的联想记忆与分割. 物理学报, 2007, 56(8): 4353-4360. doi: 10.7498/aps.56.4353
计量
  • 文章访问数:  5451
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 修回日期:  2020-11-27
  • 上网日期:  2021-03-09
  • 刊出日期:  2021-03-20

/

返回文章
返回