搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巨梯型四能级里德伯原子系统透射光谱性质的调控

高小苹 梁景睿 刘堂昆 李宏 刘继兵

引用本文:
Citation:

巨梯型四能级里德伯原子系统透射光谱性质的调控

高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵

Manipulation of transmission properties of a ladder-four-level Rydberg atomic system

Gao Xiao-Ping, Liang Jing-Rui, Liu Tang-Kun, Li Hong, Liu Ji-Bing
PDF
HTML
导出引用
  • 采用超级原子模型研究了一个巨梯型四能级里德伯原子系统与一个弱光场和两个强控制场的相互作用. 利用蒙特卡罗算法, 通过数值求解海森伯-朗之万方程, 讨论了系统的动力学演化, 研究了偶极-偶极相互作用对探测场透射谱和二阶强度关联函数的影响. 在有限温度下, 利用洛伦兹分布函数代替麦克斯韦分布函数, 得到解析的探测场极化率, 讨论了强场的失谐量对系统出射探测场透射谱对称性质的影响, 最后研究了多普勒效应对探测场透射谱和二阶强度关联函数的影响. 结果表明, 在电磁诱导透明条件下, 透明窗口处出射探测场的透射率随着入射探测场强度的增强而减弱, 而当系统入射探测场强度不变时, 通过改变强场的失谐量可以得到非对称的透射谱. 此外, 当弱探测场和强场的传播方向一致时, 多普勒效应对系统透射谱和二阶强度关联函数的峰值有很小的影响. 当探测场和强场的传播方向不一致时, 多普勒效应对系统透射谱和二阶强度关联函数的影响可以忽略.
    In this paper, we study the interaction of a giant ladder type four-level Rydberg atomic system with a weak light field and two strong control fields separately. We use the Monte Carlo method to calculate the dynamic evolution of this system and investigate the influence of dipole-dipole interaction on the transmission spectrum and second-order intensity correlation function of the weak probe field. By changing the value of detuning $\delta_e$ and $\delta_r$, we can obtain the asymmetric transmission spectrum of the four-level Rydberg atomic system. The influence of Doppler effect on transmission spectrum and second-order intensity correlation function are also studied. By using super atom model, the influences of different incident probe field intensities on the transmission spectrum and the second-order intensity correlation function of probe field are discussed in the Rydberg atomic system. The results show that the transmission spectrum of the four-level Rydberg atomic system is symmetric when the detuning $\delta_e=\delta_r=0$. We obtain the asymmetric transmission spectrum of the system when the value of detuning $(\delta_e, \delta_r)$ changes from 0 to 43 MHz. In order to evaluate the influence of temperature on the transmission spectrum of the system, the Lorentz distribution function is introduced to calculate the polarizability analytically. And, the influence of temperature on the asymmetric transmission spectrum and the second-order intensity correlation function are discussed at finite temperature separately. The results show that the transmittance of the outgoing probe field at the transparent window decreases with the increase of the intensity of the incident probe light field under the condition of electromagnetically induced transparency. When the intensity of the incident probe field is constant, the asymmetric transmission spectrum can be obtained by changing the detuning of the strong field. In addition, when the propagation direction of the probe field is consistent with that of the strong field, the peak value of the transmission spectrum and the peak value of the second-order intensity correlation function of the system slightly increase as the temperature increases. When the propagation direction of the detection field is inconsistent with that of the strong field, the influence of the Doppler effect on the transmission spectrum and the second-order intensity correlation function of the system can be ignored.
      通信作者: 刘继兵, liujb@hbnu.edu.cn
    • 基金项目: 湖北省高等学校优秀中青年科技创新团队项目(批准号: T2020014)和国家自然科学基金(批准号: 11874251)资助的课题
      Corresponding author: Liu Ji-Bing, liujb@hbnu.edu.cn
    • Funds: Project supported by the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province, China (Grant No. T2020014) and the National Natural Science Foundation of China (Grant No. 11874251)
    [1]

    Golkar S, Tavassoly M K 2019 Mod. Phys. Lett. A 34 1950077

    [2]

    Cui L, Zhang Y, Man Z, Xia Y 2012 Chin. Opt. Lett. 10 0202

    [3]

    Altintas F, Eryigit R 2010 J. Phys. A: Math. Theor. 43 415306Google Scholar

    [4]

    Jahanbakhsh F, Tavassoly M 2020 Mod. Phys. Lett. A 35 2050183

    [5]

    Jaksch D, Cirac J, Zoller P, Rolston S, Cote R, Lukin M 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [6]

    Zeng Y, Xu P, He X, Liu Y, Liu M, Wang J, Papoular D, Shlyapnikov G, Zhan M 2017 Phys. Rev. Lett. 119 160502Google Scholar

    [7]

    Jan M, Xu X Y, Wang Q, Chen Z, Han Y J, Li C F, Guo G C 2019 Chin. Phys. B 28 090303Google Scholar

    [8]

    He X, Wang K, Zhuang J, Xu P, Gao X, Guo R, Sheng C, Liu M, Wang J, Li J, Shlyapnikov G V, Zhan M 2020 Science 370 331Google Scholar

    [9]

    Wu Y, Yang X 2005 Phys. Rev. A 71 053806Google Scholar

    [10]

    Ziauddin, Rahmatullah, Hussain A, Abbas M 2020 Opt. Commun. 461 125284Google Scholar

    [11]

    Liu Y M, Tian X D, Wang X, Yan D, Wu J H 2016 Opt. Lett. 41 408Google Scholar

    [12]

    Liu J, Liu N, Shan C, Li H, Liu T, Zheng A 2020 J. Phys. B: At. Mol. Opt. Phys. 53 145401Google Scholar

    [13]

    Juan D Serna A J 2019 Opt. Commun. 445 291Google Scholar

    [14]

    Bai Z, Zhang Q, Huang G 2020 Phys. Rev. A 101 053845Google Scholar

    [15]

    Hang C, Huang G 2018 Phys. Rev. A 98 043840Google Scholar

    [16]

    Tsiberkin K 2018 J. Exp. Theor. Phys. 127 1059Google Scholar

    [17]

    Wu Y 2005 Phys. Rev. A 71 053820Google Scholar

    [18]

    Li X, Wang Q, Wang H, Shi C, Jardine M, Wen L 2019 J. Phys. B: At. Mol. Opt. Phys. 52 155302Google Scholar

    [19]

    Yang G, Guo J, Zhang S 2019 Int. J. Mod. Phys. B 33 1950048Google Scholar

    [20]

    Zhang R F, Zhang X, Li L 2019 Phys. Lett. A 383 231Google Scholar

    [21]

    Konotop V V, Victor M P G 2002 Phys. Lett. A 300 348Google Scholar

    [22]

    Petrosyan D, Fleischhauer M 2008 Phys. Rev. Lett. 100 170501Google Scholar

    [23]

    Friedler I, Petrosyan D, Fleischhauer M, Kurizki G 2005 Phys. Rev. A 72 043803Google Scholar

    [24]

    Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T, Lukin M D 2011 Phys. Rev. Lett. 107 133602Google Scholar

    [25]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601Google Scholar

    [26]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 7362

    [27]

    Liu Y M, Tian X D, Yan D, Zhang Y, Cui C L, Wu J H 2015 Phys. Rev. A 91 043802Google Scholar

    [28]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [29]

    Xiao M, Li Y Q, Jin S Z, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar

    [30]

    Yu Y C, Dong M X, Ye Y H, Guo G, Ding D S, Shi B S 2020 Sci. China Phys. Mech. 63 110312Google Scholar

    [31]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [32]

    Sandhya S, Sharma K 1997 Phys. Rev. A 55 2155Google Scholar

    [33]

    Yang H, Fan C H, Zhang H X, Liu Y M, Wu J H 2019 J. Phys. B: At. Mol. Opt. Phys. 52 055502Google Scholar

    [34]

    Bai S Y, Bao Q Q, Tian X D, Liu Y M, Wu J 2018 J. Phys. B: At. Mol. Phys. 51 075502Google Scholar

    [35]

    Liu J, Liu N, Liu T, Shan C, Li H, Zheng A, Xie X T 2020 J. Magn. Magn. Mater. 503 166609Google Scholar

    [36]

    Liu J, Liu N, Shan C, Zheng A, Liu T, Li H, Xie X T 2016 Phys. Lett. A 380 2458Google Scholar

    [37]

    Mal K, Islam K, Mondal S, Bhattacharyya D, Bandyopadhyay A 2020 Chin. Phys. B 29 054211Google Scholar

    [38]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Weatherill K J 2012 Opt. Lett. 37 3858Google Scholar

    [39]

    Gao Y, Ren Y, Yu D, Qian J 2019 Phys. Rev. A 100 033823Google Scholar

  • 图 1  里德伯原子系统能级示意图, 一个失谐量为$ \delta_{\rm p} $的弱探测场驱动基态到亚激发态的跃迁, 第一个失谐量为$ \delta_e $的强控制场驱动亚激发态到激发态的跃迁, 第二个失谐量为$ \delta_r $的强控制场驱动激发态到里德伯态的跃迁. 实际能级基于铯原子选取

    Fig. 1.  General energy level diagram for four levels Rydberg atomic system. A weak probe field, detuned from the intermediate level by $ \delta_{\rm p} $, drives transitions from the ground state $ |g\rangle $ to the intermediate state $ |k\rangle $. The first strong control field, detuned from the intermediate level by $ \delta_e $, drives transitions from the intermediate state $ |k\rangle $ to the excited state $ |e\rangle $. State $ |r\rangle $ is a Rydberg state directly coupled to state $ |e\rangle $ by the second strong control field $ {\varOmega_{\rm c2}} $. Real energy levels are shown based on Cs atoms.

    图 2  (a)透射函数$ I_{\rm p}(L)/I_{\rm p}(0) $$ \delta_{\rm p}/(2\pi) $变化的曲线, 三条线对应不同的初始探测场$\varOmega_{\rm p}/(2\pi) = 0.1, 2.0, 4.0$ MHz; (b)对应的探测场的二阶强度关联函数$ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p}(0) $$ \delta_{\rm p}/(2\pi) $变化的曲线, 其他参数取值分别为$\delta_e = \delta_r = $$ 0$, $ {\varOmega_{\rm c1}}/(2\pi) = {\varOmega_{\rm c2}}/(2\pi) = 10$ MHz

    Fig. 2.  (a) Probe field transmission $ I_{\rm p}(L)/I_{\rm p}(0) $ versus detuning $ \delta_{\rm p} $, for different input intensities corresponding to $\varOmega_{\rm p}/(2\pi) = 0.1, 2.0, 4.0$ MHz; (b) corresponding intensity correlation functions $ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p}(0) $. Other parameters are $ \delta_e = \delta_r = 0 $, ${\varOmega_{\rm c1}}/(2\pi) = $$ {\varOmega_{\rm c2}}/(2\pi) = 10$ MHz.

    图 3  探测光和控制光同向传播时, (a)透射函数$ I_{\rm p}(L)/I_{\rm p}(0) $和(b)光子二阶强度关联函数$ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p}(0) $$ {\delta_{\rm p}} $的变化, 其中$ \delta_e = \delta_r = 43 $ MHz, $ \varOmega_{\rm p}/(2\pi) = 1.5 $ MHz, ${\varOmega_{\rm c1}}/(2\pi) = {\varOmega_{\rm c2}}/(2\pi) = 10$ MHz, 实线表示$ T = 0.3\; {\rm K} $, 虚线表示$ T = 0 $ K

    Fig. 3.  When probe and control fields travel in the same direction, (a) the transmission of probe field $ I_{\rm p}(L)/I_{\rm p}(0) $ and (b) the corresponding intensity correlation functions $ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p}(0) $ versus the probe detuning $ \delta_{\rm p} $. Other parameters are selected as $ \delta_e = \delta_r = 43 $ MHz, $ \varOmega_{\rm p}/(2\pi) = $1.5 MHz, $ {\varOmega_{\rm c1}}/(2\pi) = {\varOmega_{\rm c2}}/(2\pi) = 10$ MHz. The solid curve denotes $ T = 0.3 $ K, and the dashed curve denotes $ T = 0 $ K

    图 4  探测光和控制光反向传播时, (a)透射函数$ I_{\rm p}(L)/I_{\rm p}(0) $和(b)光子二阶强度关联函数$ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p}(0) $$ {\delta_{\rm p}} $的变化, 其中$ \delta_e = \delta_r = 43 $ MHz, $ \varOmega_{\rm p}/(2\pi) = 1.5 $ MHz, ${\varOmega_{\rm c1}}/(2\pi) = $$ {\varOmega_{\rm c2}}/(2\pi) = 10$ MHz, 实线表示$ T = 0.3 $ K, 虚线表示$ T = 0 $ K

    Fig. 4.  When probe and control fields travel in opposite directions, (a) the transmission of probe field $ I_{\rm p}(L)/I_{\rm p}(0) $ and (b) the corresponding intensity correlation functions $ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p(0)} $ versus the probe detuning $ \delta_{\rm p} $. Other parameters are selected as $ \delta_e = \delta_r = 43 $ MHz, $ \varOmega_{\rm p}/(2\pi) = $1.5 MHz, $ {\varOmega_{\rm c1}}(/2\pi) = {\varOmega_{\rm c2}}/(2\pi) = 10 $ MHz. The solid curve denotes $ T = 0.3 $ K, and the dashed curve denotes $ T = 0 $ K

  • [1]

    Golkar S, Tavassoly M K 2019 Mod. Phys. Lett. A 34 1950077

    [2]

    Cui L, Zhang Y, Man Z, Xia Y 2012 Chin. Opt. Lett. 10 0202

    [3]

    Altintas F, Eryigit R 2010 J. Phys. A: Math. Theor. 43 415306Google Scholar

    [4]

    Jahanbakhsh F, Tavassoly M 2020 Mod. Phys. Lett. A 35 2050183

    [5]

    Jaksch D, Cirac J, Zoller P, Rolston S, Cote R, Lukin M 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [6]

    Zeng Y, Xu P, He X, Liu Y, Liu M, Wang J, Papoular D, Shlyapnikov G, Zhan M 2017 Phys. Rev. Lett. 119 160502Google Scholar

    [7]

    Jan M, Xu X Y, Wang Q, Chen Z, Han Y J, Li C F, Guo G C 2019 Chin. Phys. B 28 090303Google Scholar

    [8]

    He X, Wang K, Zhuang J, Xu P, Gao X, Guo R, Sheng C, Liu M, Wang J, Li J, Shlyapnikov G V, Zhan M 2020 Science 370 331Google Scholar

    [9]

    Wu Y, Yang X 2005 Phys. Rev. A 71 053806Google Scholar

    [10]

    Ziauddin, Rahmatullah, Hussain A, Abbas M 2020 Opt. Commun. 461 125284Google Scholar

    [11]

    Liu Y M, Tian X D, Wang X, Yan D, Wu J H 2016 Opt. Lett. 41 408Google Scholar

    [12]

    Liu J, Liu N, Shan C, Li H, Liu T, Zheng A 2020 J. Phys. B: At. Mol. Opt. Phys. 53 145401Google Scholar

    [13]

    Juan D Serna A J 2019 Opt. Commun. 445 291Google Scholar

    [14]

    Bai Z, Zhang Q, Huang G 2020 Phys. Rev. A 101 053845Google Scholar

    [15]

    Hang C, Huang G 2018 Phys. Rev. A 98 043840Google Scholar

    [16]

    Tsiberkin K 2018 J. Exp. Theor. Phys. 127 1059Google Scholar

    [17]

    Wu Y 2005 Phys. Rev. A 71 053820Google Scholar

    [18]

    Li X, Wang Q, Wang H, Shi C, Jardine M, Wen L 2019 J. Phys. B: At. Mol. Opt. Phys. 52 155302Google Scholar

    [19]

    Yang G, Guo J, Zhang S 2019 Int. J. Mod. Phys. B 33 1950048Google Scholar

    [20]

    Zhang R F, Zhang X, Li L 2019 Phys. Lett. A 383 231Google Scholar

    [21]

    Konotop V V, Victor M P G 2002 Phys. Lett. A 300 348Google Scholar

    [22]

    Petrosyan D, Fleischhauer M 2008 Phys. Rev. Lett. 100 170501Google Scholar

    [23]

    Friedler I, Petrosyan D, Fleischhauer M, Kurizki G 2005 Phys. Rev. A 72 043803Google Scholar

    [24]

    Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T, Lukin M D 2011 Phys. Rev. Lett. 107 133602Google Scholar

    [25]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601Google Scholar

    [26]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 7362

    [27]

    Liu Y M, Tian X D, Yan D, Zhang Y, Cui C L, Wu J H 2015 Phys. Rev. A 91 043802Google Scholar

    [28]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [29]

    Xiao M, Li Y Q, Jin S Z, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar

    [30]

    Yu Y C, Dong M X, Ye Y H, Guo G, Ding D S, Shi B S 2020 Sci. China Phys. Mech. 63 110312Google Scholar

    [31]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [32]

    Sandhya S, Sharma K 1997 Phys. Rev. A 55 2155Google Scholar

    [33]

    Yang H, Fan C H, Zhang H X, Liu Y M, Wu J H 2019 J. Phys. B: At. Mol. Opt. Phys. 52 055502Google Scholar

    [34]

    Bai S Y, Bao Q Q, Tian X D, Liu Y M, Wu J 2018 J. Phys. B: At. Mol. Phys. 51 075502Google Scholar

    [35]

    Liu J, Liu N, Liu T, Shan C, Li H, Zheng A, Xie X T 2020 J. Magn. Magn. Mater. 503 166609Google Scholar

    [36]

    Liu J, Liu N, Shan C, Zheng A, Liu T, Li H, Xie X T 2016 Phys. Lett. A 380 2458Google Scholar

    [37]

    Mal K, Islam K, Mondal S, Bhattacharyya D, Bandyopadhyay A 2020 Chin. Phys. B 29 054211Google Scholar

    [38]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Weatherill K J 2012 Opt. Lett. 37 3858Google Scholar

    [39]

    Gao Y, Ren Y, Yu D, Qian J 2019 Phys. Rev. A 100 033823Google Scholar

  • [1] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量. 物理学报, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [2] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长. 物理学报, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [3] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [4] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统. 物理学报, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [5] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [6] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱. 物理学报, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [7] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [8] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [9] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [10] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [11] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [12] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [13] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠. 物理学报, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [14] 吕浩, 尤凯, 兰燕燕, 高冬, 赵秋玲, 王霞. 非对称光束干涉制备二维微纳光子结构研究. 物理学报, 2017, 66(21): 217801. doi: 10.7498/aps.66.217801
    [15] 江浩, 周杰, 菊池久和, 邵根富. 基于三维空间域移动通信统计信道的多普勒效应. 物理学报, 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [16] 贺志, 李龙武. 两二能级原子在共同环境下的量子关联动力学. 物理学报, 2013, 62(18): 180301. doi: 10.7498/aps.62.180301
    [17] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [18] 郭德军, 单传家, 夏云杰. 内禀退相干下Tavis-Cummings模型中原子的纠缠演化与贝尔不等式破坏. 物理学报, 2007, 56(4): 2139-2147. doi: 10.7498/aps.56.2139
    [19] 单传家, 夏云杰. Tavis-Cummings模型中两纠缠原子纠缠的演化特性. 物理学报, 2006, 55(4): 1585-1590. doi: 10.7498/aps.55.1585
    [20] 阮怀林, 万宝年, 张先梅, 刘建坤. 用勒让德级数处理Abel变换. 物理学报, 2001, 50(12): 2393-2397. doi: 10.7498/aps.50.2393
计量
  • 文章访问数:  4488
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2021-01-18
  • 上网日期:  2021-05-22
  • 刊出日期:  2021-06-05

/

返回文章
返回