搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时域剪切干涉的纳秒脉冲相位测量技术

潘良泽 刘诚 朱健强

引用本文:
Citation:

基于时域剪切干涉的纳秒脉冲相位测量技术

潘良泽, 刘诚, 朱健强

Phase retrieval of nanosecond laser pulses based on temporal shearing interferomentry

Pan Liang-Ze, Liu Cheng, Zhu Jian-Qiang
PDF
HTML
导出引用
  • 提出一种时域剪切干涉技术测量纳秒激光脉冲的时间相位分布, 该方法将待测脉冲分为彼此之间有数百个皮秒延迟量的两个脉冲; 并在对其中一个脉冲加入适量的频移后和另一个脉冲合束, 得到时域干涉条纹; 最后采用相适应的算法, 从记录的时域条纹计算得到纳秒激光脉冲的时间相位分布, 并进一步计算得到激光脉冲的精细光谱结构. 在对测量原理进行系统分析的基础上, 利用数值模拟和实验对该相位测量技术的可行性进行了验证, 并系统分析了其测量误差和非理想条件下的各种干扰因素的影响. 由于该测量技术不采用任何非线光学方法, 可对任何波长的激光脉冲进行测量, 具有光路简单、测量精度高和适用范围广等优点, 为需要对纳秒激光脉冲的时域相位分布进行测量的高功率激光等领域提供了一种简单便捷的测量新技术.
    Temporal shearing interferometry is proposed to measure the temporal phase distribution of nanosecond laser pulses. In the proposed scheme, the pulse to be measured is divided into two pulses with a delay of hundreds of picoseconds in between, arbitrary one of the two pulses is added to by an appropriate amount of frequency shift, then is combined with the remaining pulse, thereby obtaining the temporal shearing interferogram that is recorded by a normal photodiode. The temporal phase distribution is calculated by an adaptive algorithm based on Fourier transform, and further the precise spectra of the measured pulse can also be calculated according to the Fourier relation between time domain and spectral domain. Based on the systematic analysis of the principle of the technology, the proposed technology is verified by numerical simulation. And the influence of the variable parameters including noise, relative delay, relative intensity on the measured error are systematically analyzed in the simulation. And the results show that the proposed nanosecond temporal phase diagnostic technique has a good performance when the signal noise ratio of the interferogram is above 15 dB, the relative delay of the pulses is between 0.5% and 28% and the relative intensity is above 0.1%. The proposed method is verified experimentally in a nanosecond laser system with central wavelength of 640 nm and pulse width of 20 ns. And the calculated spectra obtained from the temporal shearing interferogram match well with the spectra measured by a scanning Fabry-Perot interferometer. This proposed technique does not use any nonlinear optical effects, thus it can be applied to the diagnostic of nanosecond laser pulse centered at any wavelength. Hence, it provides a simple experimental setup for implementing the higher-accuracy diagnostic of the temporal phase distribution of nanosecond laser pulses.
      通信作者: 刘诚, chengliu@siom.ac.cn ; 朱健强, jqzhu@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61827816, 11875308, 61675215)、中国科学院科研仪器设备研制项目(批准号: YJKYYQ20180024)和上海市“科技创新行动计划”(批准号: 19142202600)资助的课题
      Corresponding author: Liu Cheng, chengliu@siom.ac.cn ; Zhu Jian-Qiang, jqzhu@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61827816, 11875308, 61675215), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20180024), and the Science and Technology Innovation Action Plan Project of Shanghai, China (Grant No. 19142202600)
    [1]

    Zhu J 2019 High Power Laser Sci. Eng. 7 12Google Scholar

    [2]

    Zhu J, Xie X, Sun M, Kang J, Yang Q, Guo A, Zhu H, Zhu P, Gao Q, Liang X, Cui Z, Yang S, Zhang C, Lin Z 2018 High Power Laser Sci. Eng. 6 e29Google Scholar

    [3]

    Amirov R K, Asinovskii E I, Markovets V V 1981 High Temp. 19 37Google Scholar

    [4]

    Wang Y, Chen A, Zhang D, Wang Q, Li S, Jiang Y, Jin M 2020 Phys. Plasmas 27 023507Google Scholar

    [5]

    Mannion O M, Igumenshchev I V, Anderson K S, Betti R, Campbell E M, Cao D, Forrest C J, Johnson M G, Glebov V Y, Goncharov V N, Gopalaswamy V, Ivancic S T, Jacobs-Perkins D W, Kalb A, Knauer J P, Kwiatkowski J, Lees A, Marshall F J, Michalko M, Mohamed Z L, Patel D, Rinderknecht H G, Shah R C, Stoeckl C, Theobald W, Woo K M, Regan S P 2021 Phys. Plasmas 28 042701Google Scholar

    [6]

    Zhang H, Yu T, Guo N, Xue H, Zhang W, Gao D, Ma X, Shen H, Wang Q 2021 Nucl. Instrum. Meth. B 493 1Google Scholar

    [7]

    Glenzer S H, Redmer R 2009 Rev. Mod. Phys. 81 1625Google Scholar

    [8]

    Kim H Y, Golkowski M, Harid V 2021 Eur. Phys. J. D 75 134Google Scholar

    [9]

    Jourdain N, Chaulagain U, Havlik M, Kramer D, Kumar D, Majerova I, Tikhonchuk V T, Korn G, Weber S 2021 Matter Radiat. Extrem. 6 015401Google Scholar

    [10]

    Delong K W, Trebino R, Hunter J, White W E 1994 J. Opt. Soc. Am. B 11 2206Google Scholar

    [11]

    Yang Z, Cao W, Chen X, Zhang J, Mo Y, Xu H, Mi K, Zhang Q, Lan P, Lu P 2020 Opt. Lett. 45 567Google Scholar

    [12]

    Jafari R, Trebino R 2020 IEEE J. Quantum Electron. 56 8600108Google Scholar

    [13]

    Iaconis C, Walmsley I A 1998 Opt. Lett. 23 792Google Scholar

    [14]

    Sheng H C, Zhi G Z, Lu C, Yu Q D, Qing Y W 2009 J. Optoelectron. Laser 20 1005Google Scholar

    [15]

    何铁英 2004 硕士学位论文 (天津: 天津大学)

    He T Y 2004 M. S. Thesis (Tianjin: Tianjin University) (in Chinese)

    [16]

    Pedatzur O, Trabattoni A, Leshem B, Shalmoni H, Castrovilli M C, Galli M, Lucchini M, Mansson E, Frassetto F, Poletto L, Nadler B, Raz O, Nisoli M, Calegari F, Oron D, Dudovich N 2019 Nat. Photonics 13 91Google Scholar

    [17]

    Fee M S, Danzmann K, Chu S 1992 Phys. Rev. A 45 4911Google Scholar

    [18]

    Gangopadhyay S, Melikechi N, Eyler E E 1994 J. Opt. Soc. Am. B 11 2314Google Scholar

    [19]

    Bowlan P, Trebino R 2011 Opt. Express 19 1367Google Scholar

    [20]

    Dorrer C, Kang I 2008 J. Opt. Soc. Am. B 25 A1Google Scholar

    [21]

    Takeda M, Ina H, Kobayashi S 1982 J. Opt. Soc. Am. 72 156Google Scholar

    [22]

    Freischlad K R, Koliopoulos C L 1986 J. Opt. Soc. Am. A 3 1852Google Scholar

  • 图 1  (a)自参考时域剪切纳秒相位测量技术原理; (b)重建过程

    Fig. 1.  (a) Schematic diagram of temporal self-referencing technique for the diagnostics of a nanosecond laser pulse; (b) reconstruction procedure.

    图 2  基于自参考时域剪切的纳秒相位测量技术的仿真结果. 每列表示不同强度分布脉冲的重建结果, 每一列中第一幅图是合束后的时域剪切干涉图; 第二幅中蓝色实线表示脉冲的时间强度分布, 绿色实线为原相位分布, 红色虚线为重建的相位分布; 第三幅中蓝色实线为计算所得的光谱分布, 红色虚线为原光谱分布

    Fig. 2.  Simulation results of phase retrieval of nanosecond laser pulses based on temporal shearing interferometry. Each column represents reconstructed results. In each column, the first plot represents the recorded temporal interferogram; the second plot presents the original temporal intensity distribution (blue solid line), original temporal phase distribution (green solid line) and reconstructed temporal phase distribution (red dashed line); the third shows the original spectral intensity distribution (blue solid line) versus reconstructed spectral intensity distribution (red dashed line).

    图 3  (a)不同强度分布的脉冲, 相位重建误差随信噪比变化的曲线图; (b)—(d)在图2(b) 所示的移频剪切图中分别添加信噪比(SNR)为10, 20, 40 dB的噪声下的重建结果, 其中的插图表示计算得到的光谱强度分布

    Fig. 3.  (a) Reconstructed error between reconstructed and original signals as a function of the SNR for pulse with different intensity distribution; (b)–(d) reconstructed pulse distribution for SNR of 10, 20, 40 dB, respectively, and the computed spectra is presented in the inset.

    图 4  (a) 不同强度分布的脉冲, 相位重建误差随相对延时变化的曲线图; (b) 不同强度分布的脉冲, 相位重建误差随相对强度变化的曲线图

    Fig. 4.  (a) Reconstructed error between reconstructed and original signals as a function of relative delay for pulse with different intensity distribution; (b) reconstructed error between reconstructed and original signals as a function of relative intensity delay for pulse with different intensity distribution.

    图 5  实验结果 (a) 实验记录的时间剪切干涉图; (b) 重建的时间相位分布(红色虚线)和示波器记录到的时间强度图(绿色实线); (c) 计算光谱强度分布(蓝色实线)和测得的光谱强度分布(红色虚线)

    Fig. 5.  Experimental result: (a) Recorded temporal shearing interferogram; (b) reconstructed temporal phase distribution (red dashed line) and the temporal intensity distribution (green solid line) recorded by oscilloscope; (c) calculated (blue solid line) and measured (red dashed line) spectral intensity distribution.

  • [1]

    Zhu J 2019 High Power Laser Sci. Eng. 7 12Google Scholar

    [2]

    Zhu J, Xie X, Sun M, Kang J, Yang Q, Guo A, Zhu H, Zhu P, Gao Q, Liang X, Cui Z, Yang S, Zhang C, Lin Z 2018 High Power Laser Sci. Eng. 6 e29Google Scholar

    [3]

    Amirov R K, Asinovskii E I, Markovets V V 1981 High Temp. 19 37Google Scholar

    [4]

    Wang Y, Chen A, Zhang D, Wang Q, Li S, Jiang Y, Jin M 2020 Phys. Plasmas 27 023507Google Scholar

    [5]

    Mannion O M, Igumenshchev I V, Anderson K S, Betti R, Campbell E M, Cao D, Forrest C J, Johnson M G, Glebov V Y, Goncharov V N, Gopalaswamy V, Ivancic S T, Jacobs-Perkins D W, Kalb A, Knauer J P, Kwiatkowski J, Lees A, Marshall F J, Michalko M, Mohamed Z L, Patel D, Rinderknecht H G, Shah R C, Stoeckl C, Theobald W, Woo K M, Regan S P 2021 Phys. Plasmas 28 042701Google Scholar

    [6]

    Zhang H, Yu T, Guo N, Xue H, Zhang W, Gao D, Ma X, Shen H, Wang Q 2021 Nucl. Instrum. Meth. B 493 1Google Scholar

    [7]

    Glenzer S H, Redmer R 2009 Rev. Mod. Phys. 81 1625Google Scholar

    [8]

    Kim H Y, Golkowski M, Harid V 2021 Eur. Phys. J. D 75 134Google Scholar

    [9]

    Jourdain N, Chaulagain U, Havlik M, Kramer D, Kumar D, Majerova I, Tikhonchuk V T, Korn G, Weber S 2021 Matter Radiat. Extrem. 6 015401Google Scholar

    [10]

    Delong K W, Trebino R, Hunter J, White W E 1994 J. Opt. Soc. Am. B 11 2206Google Scholar

    [11]

    Yang Z, Cao W, Chen X, Zhang J, Mo Y, Xu H, Mi K, Zhang Q, Lan P, Lu P 2020 Opt. Lett. 45 567Google Scholar

    [12]

    Jafari R, Trebino R 2020 IEEE J. Quantum Electron. 56 8600108Google Scholar

    [13]

    Iaconis C, Walmsley I A 1998 Opt. Lett. 23 792Google Scholar

    [14]

    Sheng H C, Zhi G Z, Lu C, Yu Q D, Qing Y W 2009 J. Optoelectron. Laser 20 1005Google Scholar

    [15]

    何铁英 2004 硕士学位论文 (天津: 天津大学)

    He T Y 2004 M. S. Thesis (Tianjin: Tianjin University) (in Chinese)

    [16]

    Pedatzur O, Trabattoni A, Leshem B, Shalmoni H, Castrovilli M C, Galli M, Lucchini M, Mansson E, Frassetto F, Poletto L, Nadler B, Raz O, Nisoli M, Calegari F, Oron D, Dudovich N 2019 Nat. Photonics 13 91Google Scholar

    [17]

    Fee M S, Danzmann K, Chu S 1992 Phys. Rev. A 45 4911Google Scholar

    [18]

    Gangopadhyay S, Melikechi N, Eyler E E 1994 J. Opt. Soc. Am. B 11 2314Google Scholar

    [19]

    Bowlan P, Trebino R 2011 Opt. Express 19 1367Google Scholar

    [20]

    Dorrer C, Kang I 2008 J. Opt. Soc. Am. B 25 A1Google Scholar

    [21]

    Takeda M, Ina H, Kobayashi S 1982 J. Opt. Soc. Am. 72 156Google Scholar

    [22]

    Freischlad K R, Koliopoulos C L 1986 J. Opt. Soc. Am. A 3 1852Google Scholar

  • [1] 李昀, 苏桐, 盛立志, 张蕊利, 刘舵, 刘永安, 强鹏飞, 杨向辉, 许泽方. 基于超快激光调制的纳秒脉冲X射线发射源. 物理学报, 2024, 73(4): 040701. doi: 10.7498/aps.73.20231505
    [2] 王兴生, 马彦明, 高勋, 林景全. 纳秒脉冲激光诱导空气等离子体的近红外辐射特性. 物理学报, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [3] 辛成舟, 马健男, 马静, 南策文. 伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应. 物理学报, 2018, 67(15): 157502. doi: 10.7498/aps.67.20180810
    [4] 陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利. 基于全相位谱分析的剪切光束成像目标重构. 物理学报, 2017, 66(2): 024203. doi: 10.7498/aps.66.024203
    [5] 侯兴民, 章程, 邱锦涛, 顾建伟, 王瑞雪, 邵涛. 大气压管板结构纳秒脉冲放电中时域X射线研究. 物理学报, 2017, 66(10): 105204. doi: 10.7498/aps.66.105204
    [6] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾. 物理学报, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [7] 赵冠凯, 刘军, 李儒新. 基于多光子脉冲内干涉相位扫描法对飞秒激光脉冲进行相位测量和补偿的研究. 物理学报, 2014, 63(16): 164207. doi: 10.7498/aps.63.164207
    [8] 李方家, 刘军, 李儒新. 基于自衍射效应的自参考光谱干涉方法的研究. 物理学报, 2013, 62(6): 064211. doi: 10.7498/aps.62.064211
    [9] 杨景辉, 张楠, 朱晓农. 利用相干光照明的纹影成像装置研究飞秒激光脉冲烧蚀铝靶喷射物相位的超快时间演化. 物理学报, 2013, 62(13): 134203. doi: 10.7498/aps.62.134203
    [10] 杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波. 1064 nm纳秒脉冲激光诱导硅表面微结构研究. 物理学报, 2011, 60(2): 027901. doi: 10.7498/aps.60.027901
    [11] 张慧, 卢娟, 文锦辉, 雷亮, 焦中兴, 赖天树. 不同波长飞秒脉冲的相位测量. 物理学报, 2011, 60(12): 124211. doi: 10.7498/aps.60.124211
    [12] 季忠刚, 王占新, 刘建胜, 李儒新. 激光波前相位因子对飞秒脉冲激光成丝动力学的影响. 物理学报, 2010, 59(11): 7885-7891. doi: 10.7498/aps.59.7885
    [13] 王建良, 张春梅, 宋立伟, 冷雨欣. 双光路测量红外飞秒激光脉冲的载波包络相位稳定性. 物理学报, 2009, 58(6): 3966-3970. doi: 10.7498/aps.58.3966
    [14] 韩敬华, 冯国英, 杨李茗, 张秋慧, 贾 俊, 李 刚, 朱启华, 周寿桓. 纳秒激光脉冲在空气中聚焦的临界自由电子密度问题. 物理学报, 2008, 57(10): 6304-6310. doi: 10.7498/aps.57.6304
    [15] 朱江峰, 杜 强, 王向林, 滕 浩, 韩海年, 魏志义, 侯 洵. 飞秒钛宝石放大激光脉冲的载波包络相位测量与控制. 物理学报, 2008, 57(12): 7753-7757. doi: 10.7498/aps.57.7753
    [16] 谭新玉, 张端明, 李智华, 关 丽, 李 莉. 纳秒脉冲激光沉积薄膜过程中的烧蚀特性研究. 物理学报, 2005, 54(8): 3915-3921. doi: 10.7498/aps.54.3915
    [17] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 物理学报, 2005, 54(6): 2653-2661. doi: 10.7498/aps.54.2653
    [18] 邓玉强, 吴祖斌, 陈盛华, 柴 路, 王清月, 张志刚. 自参考光谱相干法的小波变换相位重建. 物理学报, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
    [19] 王 鹏, 王兆华, 魏志义, 郑加安, 孙敬华, 张 杰. 用SPIDER法测量飞秒激光脉冲的光谱相位. 物理学报, 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
    [20] 佘卫龙, 余振新, 李荣基. 光折变“波导”诱失锁模ps激光脉冲自泵浦相位共轭. 物理学报, 1996, 45(12): 2010-2015. doi: 10.7498/aps.45.2010
计量
  • 文章访问数:  2890
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 修回日期:  2021-05-04
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回