搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋涡声散射特性的尺度效应数值研究

马瑞轩 王益民 张树海 武从海 王勋年

引用本文:
Citation:

旋涡声散射特性的尺度效应数值研究

马瑞轩, 王益民, 张树海, 武从海, 王勋年

Numerical investigation of scale effect on acoustic scattering by vortex

Ma Rui-Xuan, Wang Yi-Min, Zhang Shu-Hai, Wu Cong-Hai, Wang Xun-Nian
PDF
HTML
导出引用
  • 以声波为主要表现形式的膨胀过程和以旋涡为主要表现形式的剪切过程之间的非线性耦合问题一直以来都是流体力学的研究热点. 尤其是旋涡对声波的散射问题, 具有重要的科学意义与工程应用背景. 本文通过线性紧致格式直接数值求解二维欧拉方程, 获得了平面声波穿过均熵Taylor涡的散射特性. 与之前经典文献中的标准算例比较, 结果极其吻合, 直接验证了研究所采用的高精度高分辨率空间差分和时间推进格式以及远场无反射边界条件(缓冲区)的计算方法在时域同时解析动力学量和声学量(量级远远小于动力学量)的有效性. 通过引入散射截面, 将全区域的散射分为长波近似区、共振散射区和几何声学区. 针对每个子区域, 重点分析了无量纲尺度量旋涡强度和长度尺度比对散射声场的影响, 给出了散射声场关于上述两个关键无量纲参数的尺度律关系, 并且得到了极低马赫数极大波长时散射声场的分布函数. 在此基础上给出了关于旋涡声散射物理机制的一种解释.
    When acoustic waves propagate through a volume of vortical flows, the strong nonlinear scattering lead the amplitude, the frequency, and the phase of the incident waves to change obviously. As one of the most significant problems in the area of aeroacoustics, the scattering of acoustic waves by a vortical flow plays a main role in industrial applications and scientific research. In this study, we start from an elementary vortex model. The scattering of plane acoustic waves from a Taylor vortex is investigated by solving two-dimensional Euler equations numerically in the time domain. To resolve the small-amplitude acoustic waves, a sixth-order-accurate compact Padé scheme is used for spatial derivatives and a fourth-order-accurate Runge-Kutta scheme is used to advance the solution in time. To minimize the reflection of outgoing waves, a buffer zone is used at the computational boundary. The computations of scattered fields with very small amplitudes are found to be in excellent agreement with a benchmark provided by previous studies. Simulations for the scattering from a Taylor vortex reveal that the amplitude of the scattered fields is strongly influenced by two dimensionless quantities: the vortex strength ${M_v}$ and the length-scale ratio $\lambda /R$. Based on a global analysis of scale effects of these two dimensionless quantities on the scattering cross-section, the whole scattering domain defined on the ${M_v} - \lambda /R$ plane is divided into three subdomains. As the vortex strength ${M_v}$ increases and the length-scale ratio $\lambda /R$ decreases, the acoustic scattering from a compact vortex goes through the long-wavelength domain, the resonance domain, and the geometrical acoustics domain in turn. The associated scattered fields with the increasing of intensity show more irregularities. The scattering in the long-wavelength domain possesses four primary beams described by half-sine functions, which scales as ${M_v}{\left( {\lambda /R} \right)^{ - 2}}$. In particular, the directivity of the scattered field with a very low Mach number and a very long wavelength behaves as ${M_v}{\left( {\lambda /R} \right)^{ - 2}}\left| {\sin \left( {\theta /2} \right)} \right|$. In the resonance domain, the beams in the opposite direction to the incident waves decay rapidly. The rest of two beams follow the ${M_v}$ scaling. The scattered fields are concentrated around the direction of the incident wave in the geometrical acoustics domain, where the primary beams are surrounded by several small sub-beams. The physical mechanism of the acoustic scattering caused by a vortex involves two different mechanisms, namely nonlinear scattering effect and linear long-range refraction effect.
      通信作者: 马瑞轩, maruixuan@cardc.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 11732016)、四川省科技计划(批准号: 2018JZ0076)和国家数值风洞工程 资助的课题.
      Corresponding author: Ma Rui-Xuan, maruixuan@cardc.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11732016), the Sichuan Science and Technology Program (Grant No. 2018JZ0076), and the National Numerical Windtunnel Project.
    [1]

    Ferziger J H 1974 J. Acoust. Soc. Am. 56 1705Google Scholar

    [2]

    Lund F, Rojas C 1989 Physica D 37 508Google Scholar

    [3]

    武从海, 马瑞轩, 王益民, 张树海 2020 空气动力学学报 38 1120

    Wu C, Ma R, Wang Y, Zhang S 2020 Acta Aerodyn. Sin. 38 1120

    [4]

    李秀坤, 孟祥夏, 夏峙 2015 物理学报 64 064302Google Scholar

    Li X K, Meng X X, Xia Z 2015 Acta Phys. Sin. 64 064302Google Scholar

    [5]

    夏峙, 李秀坤 2015 物理学报 64 094302Google Scholar

    Xia Z, Li X K 2015 Acta Phys. Sin. 64 094302Google Scholar

    [6]

    杨阳, 李秀坤 2016 物理学报 65 164301Google Scholar

    Yang Y, Li X K 2016 Acta Phys. Sin. 65 164301Google Scholar

    [7]

    Labbe R, Pinton J F 1998 Phys. Rev. Lett. 81 1413Google Scholar

    [8]

    Oljaca M, Gu X, Glezer A, Baffico M, Lund F 1998 Phys. Fluids 10 886Google Scholar

    [9]

    Powell A 1964 J. Acoust. Soc. Am. 36 177Google Scholar

    [10]

    Kraichnan R H 1953 J. Acoust. Soc. Am. 25 1096Google Scholar

    [11]

    Lighthill M J 1953 Proc. Cambridge Philos. Soc. 49 531Google Scholar

    [12]

    Amiet R K 1978 J. Sound Vib. 58 467Google Scholar

    [13]

    Obukhov A M 1941 Dokl. Akad. Nauk SSSR 30 616

    [14]

    Howe M S 1973 J. Sound Vib. 27 455Google Scholar

    [15]

    Clifford S F, Brown E H 1974 J. Acoust. Soc. Am. 55 929Google Scholar

    [16]

    Ostashev V E, Salomons E M, Clifford S F, Lataitis R J, Wilson D K, Blanc-Benon P, Juva D 2001 J. Acoust. Soc. Am. 109 1894Google Scholar

    [17]

    Dallois L, Blanc-Benon P, Juvé D 2001 J. Comput. Acoust. 9 477Google Scholar

    [18]

    Fetter A L 1964 Phys. Rev. A 136 1488Google Scholar

    [19]

    Oshea S 1975 J. Sound Vib. 43 109Google Scholar

    [20]

    Colonius T, LELE S, Moin P 1991 29 th Aerospace Sciences Meeting Reno, United States, January 7–10, 1991 p494

    [21]

    Colonius T, Lele S K, Moin P 1994 J. Fluid Mech. 260 271Google Scholar

    [22]

    Ford R, Smith S G L 1999 J. Fluid Mech. 386 305Google Scholar

    [23]

    Llewellyn Smith S G, Ford R 2001 Phys. Fluids 13 2876Google Scholar

    [24]

    Llewellyn Smith S G, Ford R 2001 Phys. Fluids 13 2890Google Scholar

    [25]

    Hattori Y, Llewellyn Smith S G 2002 J. Fluid Mech. 473 275Google Scholar

    [26]

    Howe M S 1999 J. Sound Vib. 227 1003Google Scholar

    [27]

    Kopiev V F, Belyaev I V 2010 J. Sound Vib. 329 1409Google Scholar

    [28]

    Candel S M 1979 J. Fluid Mech. 90 465Google Scholar

    [29]

    Clair V, Gabard G 2018 J. Fluid Mech. 841 50Google Scholar

    [30]

    Bodony D J 2006 J. Comput. Phys. 212 681Google Scholar

    [31]

    Mani A 2012 J. Comput. Phys. 231 704Google Scholar

    [32]

    Ke G, Li W, Zheng Z C 2015 21st AIAA/CEAS Aeroacoustics Conference Dallas, United States, June 22–26, 2015 p3267

  • 图 1  计算域示意图

    Fig. 1.  Schematic diagram of computation configuration.

    图 2  验证算例

    Fig. 2.  Comparison with previous studies.

    图 3  不同长度尺度比下散射截面与旋涡强度的关系(对数坐标系)

    Fig. 3.  Scattering cross-section $\varSigma $ potted against ${M_v}$ at different $\lambda /R$ (Logarithmic coordinate system).

    图 4  不同旋涡强度下散射截面与长度尺度比的关系(对数坐标系)

    Fig. 4.  Scattering cross-section $\Sigma $ plotted against $\lambda /R$ at different ${M_v}$ (Logarithmic coordinate system).

    图 5  旋涡强度和长度尺度比共同对散射截面的影响(对数坐标系)

    Fig. 5.  Scattering cross-section as a function of ${M_v}$ and $\lambda /R$ (Logarithmic coordinate system).

    图 6  t = 280时的散射声压, 其中${M_v} \!=\! 0.125$, $\lambda /R \!=\!10$

    Fig. 6.  Snapshot of scattered pressure with ${M_v} = 0.125$ and $\lambda /R = 10$ at t = 280.

    图 7  长波近似区的散射声压均方根指向性分布

    Fig. 7.  Directivity for root-mean-square pressure of the scattered fields in long-wavelength domain.

    图 8  低马赫数大波长下的散射声压均方根指向性分布

    Fig. 8.  Directivity for root-mean-square pressure of the scattered fields with low Mach number and long wavelength.

    图 9  共振散射区较大波长散射声场指向性分布

    Fig. 9.  Directivity for root-mean-square pressure of the scattered fields in resonance domain with relatively long wavelength.

    图 10  t = 140时的散射声压, 其中${M_v} \!=\! 0.125$, $\lambda /R \!=\! 4$

    Fig. 10.  Snapshot of scattered pressure with ${M_v} = 0.125$ and $\lambda /R = 4$ at t = 140

    图 11  旋涡强度对共振散射区散射声场指向性的影响

    Fig. 11.  Directivity for root-mean-square pressure of the scattered fields in resonance domain at different vortex strength.

    图 12  t = 60时的散射声压, 其中${M_v} = 0.125$, $\lambda /R = 1$

    Fig. 12.  Snapshot of scattered pressure with ${M_v} = 0.125$ and $\lambda /R = 1$ at t = 60.

    图 13  旋涡强度对共振散射区小波长散射声场指向性的影响

    Fig. 13.  Directivity for root-mean-square pressure of the scattered fields in resonance domain with relatively small wavelength at different vortex strength.

    图 14  散射声压, 其中旋涡强度${M_v} = 0.25$ (a)$\lambda /R = 1$; (b)$\lambda /R = 0.5$; (c)$\lambda /R = 0.25$; (d)$\lambda /R = 0.125$

    Fig. 14.  Snapshot of scattered pressure with ${M_v} = 0.25$: (a)$\lambda /R = 1$; (b)$\lambda /R = 0.5$; (c)$\lambda /R = 0.25$; (d) $\lambda /R = 0.125$.

    图 15  不同旋涡强度对几何声学区散射声场指向性的影响

    Fig. 15.  Directivity for root-mean-square pressure of the scattered field in geometrical acoustics domain at different vortex strength.

  • [1]

    Ferziger J H 1974 J. Acoust. Soc. Am. 56 1705Google Scholar

    [2]

    Lund F, Rojas C 1989 Physica D 37 508Google Scholar

    [3]

    武从海, 马瑞轩, 王益民, 张树海 2020 空气动力学学报 38 1120

    Wu C, Ma R, Wang Y, Zhang S 2020 Acta Aerodyn. Sin. 38 1120

    [4]

    李秀坤, 孟祥夏, 夏峙 2015 物理学报 64 064302Google Scholar

    Li X K, Meng X X, Xia Z 2015 Acta Phys. Sin. 64 064302Google Scholar

    [5]

    夏峙, 李秀坤 2015 物理学报 64 094302Google Scholar

    Xia Z, Li X K 2015 Acta Phys. Sin. 64 094302Google Scholar

    [6]

    杨阳, 李秀坤 2016 物理学报 65 164301Google Scholar

    Yang Y, Li X K 2016 Acta Phys. Sin. 65 164301Google Scholar

    [7]

    Labbe R, Pinton J F 1998 Phys. Rev. Lett. 81 1413Google Scholar

    [8]

    Oljaca M, Gu X, Glezer A, Baffico M, Lund F 1998 Phys. Fluids 10 886Google Scholar

    [9]

    Powell A 1964 J. Acoust. Soc. Am. 36 177Google Scholar

    [10]

    Kraichnan R H 1953 J. Acoust. Soc. Am. 25 1096Google Scholar

    [11]

    Lighthill M J 1953 Proc. Cambridge Philos. Soc. 49 531Google Scholar

    [12]

    Amiet R K 1978 J. Sound Vib. 58 467Google Scholar

    [13]

    Obukhov A M 1941 Dokl. Akad. Nauk SSSR 30 616

    [14]

    Howe M S 1973 J. Sound Vib. 27 455Google Scholar

    [15]

    Clifford S F, Brown E H 1974 J. Acoust. Soc. Am. 55 929Google Scholar

    [16]

    Ostashev V E, Salomons E M, Clifford S F, Lataitis R J, Wilson D K, Blanc-Benon P, Juva D 2001 J. Acoust. Soc. Am. 109 1894Google Scholar

    [17]

    Dallois L, Blanc-Benon P, Juvé D 2001 J. Comput. Acoust. 9 477Google Scholar

    [18]

    Fetter A L 1964 Phys. Rev. A 136 1488Google Scholar

    [19]

    Oshea S 1975 J. Sound Vib. 43 109Google Scholar

    [20]

    Colonius T, LELE S, Moin P 1991 29 th Aerospace Sciences Meeting Reno, United States, January 7–10, 1991 p494

    [21]

    Colonius T, Lele S K, Moin P 1994 J. Fluid Mech. 260 271Google Scholar

    [22]

    Ford R, Smith S G L 1999 J. Fluid Mech. 386 305Google Scholar

    [23]

    Llewellyn Smith S G, Ford R 2001 Phys. Fluids 13 2876Google Scholar

    [24]

    Llewellyn Smith S G, Ford R 2001 Phys. Fluids 13 2890Google Scholar

    [25]

    Hattori Y, Llewellyn Smith S G 2002 J. Fluid Mech. 473 275Google Scholar

    [26]

    Howe M S 1999 J. Sound Vib. 227 1003Google Scholar

    [27]

    Kopiev V F, Belyaev I V 2010 J. Sound Vib. 329 1409Google Scholar

    [28]

    Candel S M 1979 J. Fluid Mech. 90 465Google Scholar

    [29]

    Clair V, Gabard G 2018 J. Fluid Mech. 841 50Google Scholar

    [30]

    Bodony D J 2006 J. Comput. Phys. 212 681Google Scholar

    [31]

    Mani A 2012 J. Comput. Phys. 231 704Google Scholar

    [32]

    Ke G, Li W, Zheng Z C 2015 21st AIAA/CEAS Aeroacoustics Conference Dallas, United States, June 22–26, 2015 p3267

  • [1] 李再东, 南雪萌, 屈川, 刘伍明. 飞秒尺度下的惯性磁化强度动力学. 物理学报, 2023, 72(10): 107502. doi: 10.7498/aps.72.20230345
    [2] 潘东楷, 宗志成, 杨诺. 纳米尺度热物理中的声子弱耦合问题. 物理学报, 2022, 71(8): 086302. doi: 10.7498/aps.71.20220036
    [3] 周彦玲, 范军, 王斌, 李兵. 水下环形凹槽圆柱体散射声场空间指向性调控. 物理学报, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [4] 王益民, 马瑞轩, 武从海, 罗勇, 张树海. 旋涡声散射的空间尺度特性数值研究. 物理学报, 2021, 70(19): 194302. doi: 10.7498/aps.70.20202232
    [5] 周彦玲, 范军, 王斌. 塑料类高分子聚合物材料水中目标声学参数反演. 物理学报, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [6] 冯康艺, 王成会. 超声场中空化泡对弹性粒子微流的影响. 物理学报, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [7] 范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东. 基于声散射的水下气泡群空间关联性研究. 物理学报, 2017, 66(1): 014305. doi: 10.7498/aps.66.014305
    [8] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究. 物理学报, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [9] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [10] 潘安, 范军, 王斌, 陈志刚, 郑国垠. 双层周期加肋有限长圆柱壳声散射精细特征研究. 物理学报, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [11] 张宇, 张晓娟, 方广有. 大尺度分层介质粗糙面电磁散射的特性研究. 物理学报, 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [12] 吴海军, 蒋伟康, 鲁文波. 三维声学多层快速多极子边界元及其应用. 物理学报, 2012, 61(5): 054301. doi: 10.7498/aps.61.054301
    [13] 王照亮, 梁金国, 唐大伟, Y. T. Zhu. 单根单壁碳纳米管导热系数随长度变化尺度效应的实验和理论. 物理学报, 2008, 57(6): 3391-3396. doi: 10.7498/aps.57.3391
    [14] 支 蓉, 廉 毅, 封国林. 基于幂律尾指数研究不同尺度系统对降水的影响. 物理学报, 2007, 56(3): 1837-1842. doi: 10.7498/aps.56.1837
    [15] 阮 勇, 郇 勇, 张大成, 张泰华, 王阳元. 微米尺度结构最大抗扭强度的在线测试和研究. 物理学报, 2006, 55(5): 2234-2240. doi: 10.7498/aps.55.2234
    [16] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究. 物理学报, 2005, 54(1): 96-101. doi: 10.7498/aps.54.96
    [17] 尤云祥, 缪国平. 三维可穿透目标远场声波反演的一种指示器样本方法. 物理学报, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [18] 尤云祥, 缪国平. 阻抗障碍物声散射的反问题. 物理学报, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [19] 尤云祥, 缪国平, 刘应中. 用近场声学测量信息可视化多个三维障碍物的一种快速算法. 物理学报, 2001, 50(6): 1103-1109. doi: 10.7498/aps.50.1103
    [20] 赵宗彦, 深町共荣, 吉沢正美, 江原健治, 中岛哲夫, 川村隆明. 测定异常散射因数的强度比法. 物理学报, 1991, 40(9): 1460-1467. doi: 10.7498/aps.40.1460
计量
  • 文章访问数:  4593
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-25
  • 修回日期:  2021-03-05
  • 上网日期:  2021-05-14
  • 刊出日期:  2021-05-20

/

返回文章
返回