搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

U1–xThxO2混合燃料力学性能的分子动力学模拟

辛勇 包宏伟 孙志鹏 张吉斌 刘仕超 郭子萱 王浩煜 马飞 李垣明

引用本文:
Citation:

U1–xThxO2混合燃料力学性能的分子动力学模拟

辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明

Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation

Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming
PDF
HTML
导出引用
  • 在二氧化铀(UO2)燃料中掺杂钍(Th)是提高其热稳定性的有效手段. 本文利用分子动力学模拟方法, 系统研究了温度与掺杂浓度对U1–xThxO2混合燃料结构稳定性与力学特性的影响. 研究发现, 沿[001]晶向单轴拉伸可观察到混合燃料由初始面心立方结构的萤石相转化为具有低对称结构的scrutinyite相的特殊相变. 混合燃料体系的力学性能强烈依赖于温度与掺杂浓度, 弹性模量和断裂应力随温度的升高而减小, 断裂应变随温度的升高呈增加趋势. 当掺杂浓度小于0.1时, 弹性模量呈下降趋势, 而掺杂浓度高于0.1时, 弹性模量呈增加趋势. 断裂应力随掺杂浓度的增加而增加, 断裂应变则减小. 不同掺杂浓度下混合燃料体系均表现脆性断裂特性, 多晶样品中发生脆性沿晶断裂. 本文的研究结果可为UO2燃料的掺杂改性提供力学性能上的理论指导.
    Since thorium (Th) owns high conversion ratio in thermal neutron spectrum, high melting temperature, high thermal conductivity and good corrosion resistance in high-temperature water, it can be doped into UO2 based fuel to initiate the fission reaction, and improve the physical properties of UO2. Owing to the challenging experimental conditions and technologies, molecular dynamics (MD) simulations are conducted to investigate the influences of Th doping on the mechanical properties of U1–xThxO2. The phase transition from initial fluorite structure to the metastable scrutinyite phase when loading along the [001] direction is observed, which accords well with the previous density functional theory calculations. However, if U1–xThxO2 is loaded along the [111] direction, only brittle fracture is observed. It is found that both the elastic modulus and fracture stress decrease linearly with elevating temperature but the fracture strain increases. As the Th concentration increases from 0 to 0.55, the elastic modulus first decreases and then increases; if the Th concentration is larger than 0.1, the fracture stress increases and the fracture strain decreases monotonically. The cracks are nucleated with an angle of 45º to the loading direction, propagate rapidly, and are characteristic of brittle fracture, which accords well with the classical failure criteria and experimental results for brittle materials. By comparison, the uniaxial tensile loading is also performed for polycrystalline U1–xThxO2. It is found that the elastic modulus and fracture stress decrease as the temperature increases. However, the elastic modulus is not sensitive to the Th concentration and the fracture increases as the Th concentration increases. The brittle intergranular fracture is observed in each of all polycrystalline samples. The obtained physical parameters are useful for designing the fuels in nuclear reactors.
      通信作者: 马飞, mafei@mail.xjtu.edu.cn ; 李垣明, lym_npic@126.com
    • 基金项目: 国家自然科学基金(批准号: U20B2013, 12005213)资助的课题
      Corresponding author: Ma Fei, mafei@mail.xjtu.edu.cn ; Li Yuan-Ming, lym_npic@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U20B2013, 12005213)
    [1]

    Rest J, Cooper M W D, Spino J, Turnbull J A, Van Uffelen P, Walker C T 2019 J. Nucl. Mater. 513 310Google Scholar

    [2]

    Tonks M, Andersson D, Devanathan R, Dubourg R, El-Azab A, Freyss M, Iglesias F, Kulacsy K, Pastore G, Phillpot S R, Welland M 2018 J. Nucl. Mater. 504 300Google Scholar

    [3]

    Danièle R, Barthe M F, Christophe J 2012 J. Nucl. Mater. 420 63Google Scholar

    [4]

    Liu N Z, He H M, Noël J J, Shoesmith D W 2017 Electrochim. Acta 235 654Google Scholar

    [5]

    Mixed Oxide (MOX) Fuel, World Nuclear Association https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/mixed-oxide-fuel-mox.aspx[2021-2-3]

    [6]

    Murphy S T, Cooper M W D, Grimes R W 2014 Solid State Ionics 267 80Google Scholar

    [7]

    Ghosh P S, Arya A, Kuganathan N, Grimes R W 2019 J. Nucl. Mater. 521 89Google Scholar

    [8]

    Lee W E, Gilbert M, Murphy S T, Grimes R W, Green D J 2013 J. Am. Ceram. Soc. 96 2005Google Scholar

    [9]

    Soulié A, Crocombette J P, Kraych A, Garrido F, Sattonnay G, Clouet E 2018 Acta Mater. 150 248Google Scholar

    [10]

    Baena T, Cardinaels K, Govers Pakarinen J, Binnemans K, Verwerft M 2015 J. Nucl. Mater. 467 135Google Scholar

    [11]

    Xiao H X, Long C, Tian X, Chen H 2016 Mater. Des. 96 335Google Scholar

    [12]

    Xiao H X, Wang X, Long C, Tian X, Wang H 2017 Nucl. Eng. Technol. 49 1733Google Scholar

    [13]

    Chiang T W, Chernatynskiy A, Sinnott S B, Phillpot S R 2014 J. Nucl. Mater. 448 53Google Scholar

    [14]

    Lee C W, Chernatynskiy A, Shukla P, Stoller R E, Sinnott S B, Phillpot S R 2015 J. Nucl. Mater. 456 253Google Scholar

    [15]

    Rahman M J, Szpunar B, Szpunar J A 2019 Comput. Mater. Sci. 166 193Google Scholar

    [16]

    Calashev A Y, Ivanichkina K S, Zaikov Y P 2020 J. Solid State Chem. 286 121278Google Scholar

    [17]

    Cooper M W D, Middleburgh S C, Grimes R W 2015 J. Nucl. Mater. 466 29Google Scholar

    [18]

    Cooper M W D, Murphy S T, Fossati P C M, Rushton M J D, Grimes R W. 2014 Proc. R. Soc. London, Ser. A 470 20140427Google Scholar

    [19]

    Balboa H, Brutzel L V, Chartier A, Le B Y 2017 J. Nucl. Mater. 495 67Google Scholar

    [20]

    Rahman M J, Szpunar B, Szpunar J A 2019 J. Nucl. Mater. 513 8Google Scholar

    [21]

    Rahman M J, Cooper M W D, Szpunar B, Szpunar J A, 2018 Comput. Mater. Sci. 169 109124

    [22]

    Ghosh P S, Kuganathan N, Galvin C O T, Arya A, Dey G K, Dutta B K, Grimes R W 2016 J. Nucl. Mater. 479 112Google Scholar

    [23]

    Palomares R I, McDonnell M T, Yang L, Yao T K, Szymanowski J E S, Neuefeind J, Sigmon G E, Lian J, Tucker M G, Wirth B D, Lang M 2019 Phys. Rev. Mater. 3 053611Google Scholar

    [24]

    Canon R F, Roberts J T A, Beals R J 1971 J. Am. Ceram. Soc. 54 105Google Scholar

    [25]

    Kapoor K, Ahmad A, Laksminarayana A, Rao G V S H 2007 J. Nucl. Mater. 366 87Google Scholar

    [26]

    Arayro J, Treglia G, Ribeiro F 2016 J. Phys. Condens. Matter. 28 015006Google Scholar

    [27]

    Mo K, Miao Y B, Xu R Q, Yao T K, Lian J, Jamison L M, Yacout A M 2020 J. Nucl. Mater. 529 151943Google Scholar

    [28]

    Desai T G, Millett P C, Wolf D 2008 Acta Mater. 56 4489Google Scholar

    [29]

    Tian X F, Ge L Q, Yu Y, Wang Y, You Z J, Li L S 2019 J. Alloys Compd. 803 42Google Scholar

    [30]

    Zhang Y F, Liu X Y, Millett P C, Tonksa M, Andersson D A, Bine B 2012 J. Nucl. Mater. 430 96Google Scholar

    [31]

    Lunev A V, Kuksin A Y, Starikov S V 2017 Int. J. Plast. 89 85Google Scholar

    [32]

    Idiri M, Bihan T. L, Heathman S, Rebizant J 2004 Phys. Rev. B 70 014113Google Scholar

    [33]

    Tian X F, Wang Y, Ge L Q, Dong W J, You Z J, Dinga P P, Yu Y 2019 Comput. Mater. Sci. 169 109124Google Scholar

    [34]

    Fossati P C M, Brutzel L V, Chartier A 2013 Phys. Rev. B 88 214112Google Scholar

    [35]

    Malakkal L, Prasad A, Jossou E, Ranasinghe J, Szpunar B, Bichler L, Szpunar J 2019 J. Alloys Compd. 798 507Google Scholar

    [36]

    Cereceda D, Perlado, J M, Marian J 2012 Comput. Mater. Sci. 62 272Google Scholar

    [37]

    Meng L J, Jiang J, Wang J L, Ding F 2014 J. Phys. Chem. C 118 720Google Scholar

    [38]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [39]

    Varshni Y P 1970 Phys. Rev. B 2 3952Google Scholar

    [40]

    Feng L, Sarah C F, Brent H, Shen J D, Andrew T N 2020 JOM 72 5Google Scholar

  • 图 1  U1–xThxO2 混合燃料模型及单轴拉伸加载示意图

    Fig. 1.  Atomic model of U1–xThxO2 upon uniaxial tensile loading.

    图 2  UO2与U0.75Th0.25O2沿[001]和[111]方向单轴拉伸加载过程 (a) 应力-应变曲线; (b) 沿[001]拉伸过程中的径向分布函数; (c) 沿[111]拉伸过程中的径向分布函数; (d) U0.75Th0.25O2沿[001]拉伸的原子结构演化; (e) U0.75Th0.25O2沿[111]拉伸时的原子结构演化

    Fig. 2.  Tensile behaviors of UO2 and U0.75Th0.25O2 along [001] and [111] direction: (a) Stress-strain curves; (b) radial distribution function (RDF, g(r)) along [001] direction; (c) RDF along [111] direction; (d) the atomic structure evolution of U0.75Th0.25O2 along [001] direction; (e) the atomic structure evolution of U0.75Th0.25O2 along [111] direction.

    图 3  温度对U1–xThxO2 混合燃料沿[111]方向单轴拉伸时的力学性能的影响 (a), (b), (c) UO2, U0.95Th0.05O2及U0.45Th0.55O2不同温度下的应力-应变曲线; (d), (e), (f) 对应的弹性模量随温度的变化; (g), (h), (i) 对应的断裂应力随温度的变化; (j), (k), (l) 对应的断裂应变随温度的变化

    Fig. 3.  Effect of temperature on the mechanical properties of U1–xThxO2 loaded along the [111] direction: (a), (b), (c) Stress-strain curves of UO2, U0.95Th0.05O2 and U0.45Th0.55O2; (d), (e), (f) the corresponding elastic modulus as a function of temperature; (g), (h), (i) the corresponding fracture stress as a function of temperature; (j), (k), (l) the corresponding fracture strain as a function of temperature.

    图 4  Th掺杂浓度对U1–xThxO2 混合燃料沿[111]方向单轴拉伸时的力学性能的影响 (a) 300 K下不同掺杂浓度时的应力-应变曲线; (b) 不同温度下弹性模量随掺杂浓度的变化; (c) 不同温度下断裂应力随掺杂浓度的变化; (d) 不同温度下断裂应变随掺杂浓度的变化

    Fig. 4.  Effect of Th concentration on the mechanical properties of U1–xThxO2 loaded along the [111] direction: (a) Stress-strain curves; (b) the elastic modulus as a function of Th concentration; (c) the fracture stress as a function of Th concentration; (d) the fracture strain as a function of Th concentration.

    图 5  U1–xThxO2 混合燃料沿[111]方向单轴拉伸时的原子结构演化 (a) UO2, 300 K; (b) UO2, 1000 K; (c) U0.45Th0.55O2, 300 K; (d) U0.45Th0.55O2, 1200 K

    Fig. 5.  Typical atomic structure evolution of U1–xThxO2 upon tensile loading along [111] direction: (a) UO2, 300 K; (b) UO2, 1000 K; (c) U0.45Th0.55O2, 300 K; (d) U0.45Th0.55O2, 1200 K.

    图 6  多晶U1–xThxO2 混合燃料单轴拉伸力学特性 (a) 三种掺杂浓度下不同温度时的应力-应变曲线; (b) 弹性模量随温度的变化; (c) 断裂应力随温度的变化; (d) 断裂过程中的三维结构; (e) 不同应变下三角晶界区域的放大图, 原子颜色由其应变标定

    Fig. 6.  Mechanical behaviors of polycrystalline U1–xThxO2: (a) Stress-strain curves for different temperature and Th concentration; (b) the elastic modulus as a function of temperature; (c) the fracture stress as a function of temperatures; (d) the three-dimensional atomic structure; (e) the atomic structure evolution around a triple grain boundary.

  • [1]

    Rest J, Cooper M W D, Spino J, Turnbull J A, Van Uffelen P, Walker C T 2019 J. Nucl. Mater. 513 310Google Scholar

    [2]

    Tonks M, Andersson D, Devanathan R, Dubourg R, El-Azab A, Freyss M, Iglesias F, Kulacsy K, Pastore G, Phillpot S R, Welland M 2018 J. Nucl. Mater. 504 300Google Scholar

    [3]

    Danièle R, Barthe M F, Christophe J 2012 J. Nucl. Mater. 420 63Google Scholar

    [4]

    Liu N Z, He H M, Noël J J, Shoesmith D W 2017 Electrochim. Acta 235 654Google Scholar

    [5]

    Mixed Oxide (MOX) Fuel, World Nuclear Association https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/mixed-oxide-fuel-mox.aspx[2021-2-3]

    [6]

    Murphy S T, Cooper M W D, Grimes R W 2014 Solid State Ionics 267 80Google Scholar

    [7]

    Ghosh P S, Arya A, Kuganathan N, Grimes R W 2019 J. Nucl. Mater. 521 89Google Scholar

    [8]

    Lee W E, Gilbert M, Murphy S T, Grimes R W, Green D J 2013 J. Am. Ceram. Soc. 96 2005Google Scholar

    [9]

    Soulié A, Crocombette J P, Kraych A, Garrido F, Sattonnay G, Clouet E 2018 Acta Mater. 150 248Google Scholar

    [10]

    Baena T, Cardinaels K, Govers Pakarinen J, Binnemans K, Verwerft M 2015 J. Nucl. Mater. 467 135Google Scholar

    [11]

    Xiao H X, Long C, Tian X, Chen H 2016 Mater. Des. 96 335Google Scholar

    [12]

    Xiao H X, Wang X, Long C, Tian X, Wang H 2017 Nucl. Eng. Technol. 49 1733Google Scholar

    [13]

    Chiang T W, Chernatynskiy A, Sinnott S B, Phillpot S R 2014 J. Nucl. Mater. 448 53Google Scholar

    [14]

    Lee C W, Chernatynskiy A, Shukla P, Stoller R E, Sinnott S B, Phillpot S R 2015 J. Nucl. Mater. 456 253Google Scholar

    [15]

    Rahman M J, Szpunar B, Szpunar J A 2019 Comput. Mater. Sci. 166 193Google Scholar

    [16]

    Calashev A Y, Ivanichkina K S, Zaikov Y P 2020 J. Solid State Chem. 286 121278Google Scholar

    [17]

    Cooper M W D, Middleburgh S C, Grimes R W 2015 J. Nucl. Mater. 466 29Google Scholar

    [18]

    Cooper M W D, Murphy S T, Fossati P C M, Rushton M J D, Grimes R W. 2014 Proc. R. Soc. London, Ser. A 470 20140427Google Scholar

    [19]

    Balboa H, Brutzel L V, Chartier A, Le B Y 2017 J. Nucl. Mater. 495 67Google Scholar

    [20]

    Rahman M J, Szpunar B, Szpunar J A 2019 J. Nucl. Mater. 513 8Google Scholar

    [21]

    Rahman M J, Cooper M W D, Szpunar B, Szpunar J A, 2018 Comput. Mater. Sci. 169 109124

    [22]

    Ghosh P S, Kuganathan N, Galvin C O T, Arya A, Dey G K, Dutta B K, Grimes R W 2016 J. Nucl. Mater. 479 112Google Scholar

    [23]

    Palomares R I, McDonnell M T, Yang L, Yao T K, Szymanowski J E S, Neuefeind J, Sigmon G E, Lian J, Tucker M G, Wirth B D, Lang M 2019 Phys. Rev. Mater. 3 053611Google Scholar

    [24]

    Canon R F, Roberts J T A, Beals R J 1971 J. Am. Ceram. Soc. 54 105Google Scholar

    [25]

    Kapoor K, Ahmad A, Laksminarayana A, Rao G V S H 2007 J. Nucl. Mater. 366 87Google Scholar

    [26]

    Arayro J, Treglia G, Ribeiro F 2016 J. Phys. Condens. Matter. 28 015006Google Scholar

    [27]

    Mo K, Miao Y B, Xu R Q, Yao T K, Lian J, Jamison L M, Yacout A M 2020 J. Nucl. Mater. 529 151943Google Scholar

    [28]

    Desai T G, Millett P C, Wolf D 2008 Acta Mater. 56 4489Google Scholar

    [29]

    Tian X F, Ge L Q, Yu Y, Wang Y, You Z J, Li L S 2019 J. Alloys Compd. 803 42Google Scholar

    [30]

    Zhang Y F, Liu X Y, Millett P C, Tonksa M, Andersson D A, Bine B 2012 J. Nucl. Mater. 430 96Google Scholar

    [31]

    Lunev A V, Kuksin A Y, Starikov S V 2017 Int. J. Plast. 89 85Google Scholar

    [32]

    Idiri M, Bihan T. L, Heathman S, Rebizant J 2004 Phys. Rev. B 70 014113Google Scholar

    [33]

    Tian X F, Wang Y, Ge L Q, Dong W J, You Z J, Dinga P P, Yu Y 2019 Comput. Mater. Sci. 169 109124Google Scholar

    [34]

    Fossati P C M, Brutzel L V, Chartier A 2013 Phys. Rev. B 88 214112Google Scholar

    [35]

    Malakkal L, Prasad A, Jossou E, Ranasinghe J, Szpunar B, Bichler L, Szpunar J 2019 J. Alloys Compd. 798 507Google Scholar

    [36]

    Cereceda D, Perlado, J M, Marian J 2012 Comput. Mater. Sci. 62 272Google Scholar

    [37]

    Meng L J, Jiang J, Wang J L, Ding F 2014 J. Phys. Chem. C 118 720Google Scholar

    [38]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [39]

    Varshni Y P 1970 Phys. Rev. B 2 3952Google Scholar

    [40]

    Feng L, Sarah C F, Brent H, Shen J D, Andrew T N 2020 JOM 72 5Google Scholar

  • [1] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [2] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [3] 熊开欣, 席昆, 鲍磊, 张忠良, 谭志杰. 脱氧核糖核酸柔性的分子动力学模拟:Amber bsc1和bsc0力场的对比研究. 物理学报, 2018, 67(10): 108701. doi: 10.7498/aps.67.20180326
    [4] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [6] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [7] 何欣, 白清顺, 白锦轩. 多晶石墨烯拉伸断裂行为的分子动力学模拟. 物理学报, 2016, 65(11): 116101. doi: 10.7498/aps.65.116101
    [8] 樊倩, 徐建刚, 宋海洋, 张云光. 层厚度和应变率对铜-金复合纳米线力学性能影响的模拟研究. 物理学报, 2015, 64(1): 016201. doi: 10.7498/aps.64.016201
    [9] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟. 物理学报, 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [10] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [11] 张云安, 陶俊勇, 陈循, 刘彬. 水对无定形SiO2拉伸特性影响的反应分子动力学模拟. 物理学报, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [12] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [13] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [14] 颜克凤, 李小森, 陈朝阳, 徐纯钢. 整体煤气化联合循环合成气水合物法分离CO2的分子动力学模拟. 物理学报, 2010, 59(6): 4313-4321. doi: 10.7498/aps.59.4313
    [15] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [16] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [17] 王立群, 王明霞, 李德军, 杨 瑾, 余大书, 宿 杰. N2分压对ZrN/WN纳米多层膜缺陷性质与力学性能的影响. 物理学报, 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
    [18] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [19] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  5289
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-01-31
  • 上网日期:  2021-06-16
  • 刊出日期:  2021-06-20

/

返回文章
返回