搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无指针δ-淬火直接测量法测量量子密度矩阵

温永立 张善超 颜辉 朱诗亮

引用本文:
Citation:

无指针δ-淬火直接测量法测量量子密度矩阵

温永立, 张善超, 颜辉, 朱诗亮

Scheme of directly measuring quantum density matrix by δ-quench method

Wen Yong-Li, Zhang Shan-Chao, Yan Hui, Zhu Shi-Liang
PDF
HTML
导出引用
  • 量子密度矩阵描述了量子态的性质, 因此如何有效地测量密度矩阵是量子力学的核心课题之一. 最近, 几个研究组发展了一种基于弱值的直接测量密度矩阵的方法. 相较于常用的量子态层析技术, 这种方法能够更直接和更简便地重构密度矩阵. 然而这种方法需要耦合额外的测量指针, 从而也增加了测量的复杂度和测量系统的设计困难. 本文先回顾并讨论了量子态直接测量的相关研究, 然后基于δ-淬火直接测量波函数的方法提出了一种新的直接测量密度矩阵的方法. 这种方法无需耦合外部测量指针, 因此可以降低测量的复杂度和测量系统的设计困难, 更进一步地简化了直接测量密度矩阵的实验过程. 基于此方法, 提出了更高信号强度以及更少操作次数等两种无指针直接测量方案, 并对比分析了它们在不同的测量条件下的优缺点. 最后, 具体设计了测量光子密度矩阵的实验.
    Density matrix, which characterizes a quantum state, plays an important role in quantum mechanics. Recently, a method which can directly measure the elements of a density matrix was proposed. Compared with the conventional quantum state tomography which is widely used to reconstruct the density matrix, this measurement method has the advantages of directness and simplicity. However, this direct measurement method relies on an extra pointer space. The addition of this extra pointer can increase the complexity of an experiment. In this paper, we first review previous work on direct measurement, then we propose a scheme to directly measure the density matrix based on δ-quench, which is also a direct measurement method but needs no additional pointer. This proposal reduces the complexity of the measuring system and further simplifies the measurement. We propose two schemes to realize this δ-quench measurement, then analyse their superiorities in different situations of measurement. An experiment to measure photon's density matrix is also designed.
      通信作者: 朱诗亮, slzhu@scnu.edu.cn
    • 基金项目: 广东省重点领域研发计划(批准号: 2019B030330001)、广州市科技计划重点项目(批准号: 201804020055, 2019050001)、国家重点研发计划(批准号: 2016YFA0301803)和国家自然科学基金(批准号: 12074180) 资助的课题
      Corresponding author: Zhu Shi-Liang, slzhu@scnu.edu.cn
    • Funds: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B030330001), the Key Project of Science and Technology of Guangzhou, China (Grant Nos. 201804020055, 2019050001), the National Key R&D Program of China (Grant No. 2016YFA0301803), and the National Natural Science Foundation of China (Grant No. 12074180)
    [1]

    James D F V, Kwiat P G, Munro W J, White A G 2001 Phys. Rev. A 64 052312Google Scholar

    [2]

    Schmied R 2016 J. Mod. Opt. 63 1744Google Scholar

    [3]

    Lorenzo A D 2013 Phys. Rev. Lett. 110 010404Google Scholar

    [4]

    Lorenzo A D 2013 Phys. Rev. A 88 042114Google Scholar

    [5]

    Bent N, Qassim H, Tahir A A, Sych D, Leuchs G, Sánchez-Soto L L, Karimi E, Boyd R W 2015 Phys. Rev. X 5 041006

    [6]

    Lundeen J S, Sutherland B, Patel A, Stewart C, Bamber C 2011 Nature 474 188Google Scholar

    [7]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351Google Scholar

    [8]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

    [9]

    Ritchie N W M, Story J G, Hulet R G 1991 Phys. Rev. Lett. 66 1107Google Scholar

    [10]

    Yang G, Lian B W, Nie M 2016 Chin. Phys. B 25 080310Google Scholar

    [11]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2013 Chin. Phys. B 23 020304

    [12]

    黄江 2017 物理学报 66 010301Google Scholar

    Huang J 2017 Acta Phys. Sin. 66 010301Google Scholar

    [13]

    王美姣, 夏云杰 2015 物理学报 64 240303Google Scholar

    Wang M J, Xia Y J 2015 Acta Phys. Sin. 64 240303Google Scholar

    [14]

    Salvail J Z, Agnew M, Johnson A S, Bolduc E 2013 Nat. Photonics 7 316Google Scholar

    [15]

    Malik M, Mirhosseini M, Lavery M P J, Leach J, Padgett M J, Boyd R W 2014 Nat. Commun. 5 3115Google Scholar

    [16]

    Kocsis S, Braverman B, Ravets S, Stevens M J, Mirin R P, Shalm L K, Steinberg A M 2011 Science 332 1170Google Scholar

    [17]

    Lundeen J S, Bamber C 2012 Phys. Rev. Lett. 108 070402Google Scholar

    [18]

    Boldu E, Gariepy G, Leach J 2016 Nat. Commun. 7 10439Google Scholar

    [19]

    Qin L, Xu L, Feng W, Li X Q 2017 New J. Phys. 19 033036Google Scholar

    [20]

    Bamber C, Lundeen J S 2014 Phys. Rev. Lett. 112 070405Google Scholar

    [21]

    Shojaee E, Jackson C S, Riofrío C A, Kalev A, Deutsch I H 2018 Phys. Rev. Lett. 121 130404Google Scholar

    [22]

    Fischbach J, Freyberger M 2012 Phys. Rev. A 86 052110Google Scholar

    [23]

    Mirhosseini M, Magana-Loaiza O S, Rafsanjani S M H, Boyd R W 2014 Phys. Rev. Lett. 113 090402Google Scholar

    [24]

    Vallone G, Dequal D 2016 Phys. Rev. Lett. 116 040502Google Scholar

    [25]

    Denkmayr T, Geppert H, Lemmel H, Waegell M, Dressel J, Hasegawa Y, Sponar S 2018 Phys. Rev. Lett. 118 010402

    [26]

    Zhang C R, Hu M J, Xiang G Y, Zhang Y S, Li C F, Guo G C 2020 Chin. Phys. Lett. 37 080301Google Scholar

    [27]

    Zhang C R, Hu M J, Hou Z B, Tang J F, Zhu J, Xiang G Y, Li C F, Guo G C, Zhang Y S 2020 Phys. Rev. A 101 012119Google Scholar

    [28]

    Pan W W, Xu X Y, Kedem Y, Wang Q Q, Chen Z, Jan M, Su K, Xu J S, Han Y J, Li C F, Guo G C 2019 Phys. Rev. Lett. 123 150402Google Scholar

    [29]

    Thekkadath G S, Giner L, Chalich Y, Horton M J, Banker J, Lundeen J S 2016 Phys. Rev. Lett. 117 120401Google Scholar

    [30]

    Calderaro L, Foletto G, Dequal D, Villoresi P, Vallone G 2018 Phys. Rev. Lett. 121 230501Google Scholar

    [31]

    Zhang S, Zhou Y, Mei Y, Liao K, Wen Y L, Li J, Zhang X D, Du S, Yan H, Zhu S L 2019 Phys. Rev. Lett. 123 190402Google Scholar

  • 图 1  (a) 文献[30]中有指针直接测量密度矩阵的方法; (b) 本文提出的无指针直接测量密度矩阵的方法

    Fig. 1.  (a) Schematic of direct measurement method of the density matrix with pointer in Ref. [30]; (b) our proposal of direct measurement method of the density matrix without pointer.

    图 2  (a) 文献[30]提出的有指针直接测量密度矩阵的实验方案; (b) 本文提出的无指针直接测量密度矩阵实验方案

    Fig. 2.  (a) Schematic of direct measurement of the density matrix with pointer in Ref. [30]; (b) experimental proposal of our direct measurement without pointer.

  • [1]

    James D F V, Kwiat P G, Munro W J, White A G 2001 Phys. Rev. A 64 052312Google Scholar

    [2]

    Schmied R 2016 J. Mod. Opt. 63 1744Google Scholar

    [3]

    Lorenzo A D 2013 Phys. Rev. Lett. 110 010404Google Scholar

    [4]

    Lorenzo A D 2013 Phys. Rev. A 88 042114Google Scholar

    [5]

    Bent N, Qassim H, Tahir A A, Sych D, Leuchs G, Sánchez-Soto L L, Karimi E, Boyd R W 2015 Phys. Rev. X 5 041006

    [6]

    Lundeen J S, Sutherland B, Patel A, Stewart C, Bamber C 2011 Nature 474 188Google Scholar

    [7]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351Google Scholar

    [8]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

    [9]

    Ritchie N W M, Story J G, Hulet R G 1991 Phys. Rev. Lett. 66 1107Google Scholar

    [10]

    Yang G, Lian B W, Nie M 2016 Chin. Phys. B 25 080310Google Scholar

    [11]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2013 Chin. Phys. B 23 020304

    [12]

    黄江 2017 物理学报 66 010301Google Scholar

    Huang J 2017 Acta Phys. Sin. 66 010301Google Scholar

    [13]

    王美姣, 夏云杰 2015 物理学报 64 240303Google Scholar

    Wang M J, Xia Y J 2015 Acta Phys. Sin. 64 240303Google Scholar

    [14]

    Salvail J Z, Agnew M, Johnson A S, Bolduc E 2013 Nat. Photonics 7 316Google Scholar

    [15]

    Malik M, Mirhosseini M, Lavery M P J, Leach J, Padgett M J, Boyd R W 2014 Nat. Commun. 5 3115Google Scholar

    [16]

    Kocsis S, Braverman B, Ravets S, Stevens M J, Mirin R P, Shalm L K, Steinberg A M 2011 Science 332 1170Google Scholar

    [17]

    Lundeen J S, Bamber C 2012 Phys. Rev. Lett. 108 070402Google Scholar

    [18]

    Boldu E, Gariepy G, Leach J 2016 Nat. Commun. 7 10439Google Scholar

    [19]

    Qin L, Xu L, Feng W, Li X Q 2017 New J. Phys. 19 033036Google Scholar

    [20]

    Bamber C, Lundeen J S 2014 Phys. Rev. Lett. 112 070405Google Scholar

    [21]

    Shojaee E, Jackson C S, Riofrío C A, Kalev A, Deutsch I H 2018 Phys. Rev. Lett. 121 130404Google Scholar

    [22]

    Fischbach J, Freyberger M 2012 Phys. Rev. A 86 052110Google Scholar

    [23]

    Mirhosseini M, Magana-Loaiza O S, Rafsanjani S M H, Boyd R W 2014 Phys. Rev. Lett. 113 090402Google Scholar

    [24]

    Vallone G, Dequal D 2016 Phys. Rev. Lett. 116 040502Google Scholar

    [25]

    Denkmayr T, Geppert H, Lemmel H, Waegell M, Dressel J, Hasegawa Y, Sponar S 2018 Phys. Rev. Lett. 118 010402

    [26]

    Zhang C R, Hu M J, Xiang G Y, Zhang Y S, Li C F, Guo G C 2020 Chin. Phys. Lett. 37 080301Google Scholar

    [27]

    Zhang C R, Hu M J, Hou Z B, Tang J F, Zhu J, Xiang G Y, Li C F, Guo G C, Zhang Y S 2020 Phys. Rev. A 101 012119Google Scholar

    [28]

    Pan W W, Xu X Y, Kedem Y, Wang Q Q, Chen Z, Jan M, Su K, Xu J S, Han Y J, Li C F, Guo G C 2019 Phys. Rev. Lett. 123 150402Google Scholar

    [29]

    Thekkadath G S, Giner L, Chalich Y, Horton M J, Banker J, Lundeen J S 2016 Phys. Rev. Lett. 117 120401Google Scholar

    [30]

    Calderaro L, Foletto G, Dequal D, Villoresi P, Vallone G 2018 Phys. Rev. Lett. 121 230501Google Scholar

    [31]

    Zhang S, Zhou Y, Mei Y, Liao K, Wen Y L, Li J, Zhang X D, Du S, Yan H, Zhu S L 2019 Phys. Rev. Lett. 123 190402Google Scholar

  • [1] 田礼漫, 温永立, 王云飞, 张善超, 李建锋, 杜镜松, 颜辉, 朱诗亮. 路径积分传播子测量的研究进展. 物理学报, 2023, 72(20): 200305. doi: 10.7498/aps.72.20230902
    [2] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [3] 丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏. 基于辅助单比特测量的量子态读取算法. 物理学报, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [4] 巩龙延, 杨慧, 赵生妹. 中间测量对受驱单量子比特统计复杂度的影响. 物理学报, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [5] 凌中火, 王帅, 张金仓, 张逸竹, 阎天民, 江玉海. 太赫兹辅助测量铷原子超快量子相干过程的理论研究. 物理学报, 2020, 69(17): 173401. doi: 10.7498/aps.69.20200218
    [6] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰. 基于金刚石NV色心的纳米尺度磁场测量和成像技术. 物理学报, 2018, 67(13): 130701. doi: 10.7498/aps.67.20180243
    [7] 孙恒信, 刘奎, 张俊香, 郜江瑞. 基于压缩光的量子精密测量. 物理学报, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [8] 范洪义, 何锐. 介观RLC电路的密度矩阵的量子耗散. 物理学报, 2014, 63(11): 110301. doi: 10.7498/aps.63.110301
    [9] 张继彦, 杨家敏, 杨国洪, 丁耀南, 李军, 颜君, 吴泽清, 丁永坤, 张保汉, 郑志坚. 激光直接加热自背光法辐射不透明度测量方法探索. 物理学报, 2013, 62(19): 195201. doi: 10.7498/aps.62.195201
    [10] 陈丽英, 刘秀茹, 黎明发, 张豆豆, 王明友, 洪时明. 一种直接测量W-J参数的实验方法. 物理学报, 2013, 62(7): 079102. doi: 10.7498/aps.62.079102
    [11] 王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤. 超高压下冲击波速度直接测量技术. 物理学报, 2011, 60(2): 025202. doi: 10.7498/aps.60.025202
    [12] 邓玉强, 孙青, 于靖. 光学元件群延迟的直接测量. 物理学报, 2011, 60(2): 028102. doi: 10.7498/aps.60.028102
    [13] 王东. 正交振幅正关联正交位相反关联光束的贝尔态直接测量. 物理学报, 2010, 59(11): 7596-7601. doi: 10.7498/aps.59.7596
    [14] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量. 物理学报, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [15] 杜秀梅, 满忠晓, 夏云杰. 外磁场下XY模型中两量子位热纠缠的性质及其调控研究. 物理学报, 2008, 57(12): 7457-7462. doi: 10.7498/aps.57.7457
    [16] 黄仙山, 谢双媛, 羊亚平. 量子测量对三维光子晶体中Λ型原子动力学性质的影响. 物理学报, 2006, 55(5): 2269-2274. doi: 10.7498/aps.55.2269
    [17] 胡学宁, 李新奇. 量子点接触对单电子量子态的量子测量. 物理学报, 2006, 55(7): 3259-3264. doi: 10.7498/aps.55.3259
    [18] 邓 莉, 寿 倩, 刘叶新, 张海潮, 赖天树, 林位株. GaAs体材料及其量子阱的光学极化退相特性. 物理学报, 2004, 53(2): 640-645. doi: 10.7498/aps.53.640
    [19] 陈一新, 上官王佐, 季达人. 多能级原子的量子跳跃与连续量子测量. 物理学报, 1999, 48(5): 775-786. doi: 10.7498/aps.48.775
    [20] 霍崇儒, 赖瑞生, 朱振和, 丁陟高. 用锁模超短脉冲串直接测量BDN染料的恢复时间. 物理学报, 1982, 31(12): 84-89. doi: 10.7498/aps.31.84
计量
  • 文章访问数:  4698
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 修回日期:  2021-03-06
  • 上网日期:  2021-05-22
  • 刊出日期:  2021-06-05

/

返回文章
返回