搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蛛网结构的量子卫星广域网构建策略及性能仿真

聂敏 韩凯捷 杨光 张美玲 孙爱晶 裴昌幸

引用本文:
Citation:

基于蛛网结构的量子卫星广域网构建策略及性能仿真

聂敏, 韩凯捷, 杨光, 张美玲, 孙爱晶, 裴昌幸

Construction strategy and performance simulation of quantum satellite wide area network based on cobweb structure

Nie Min, Han Kai-Jie, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing
PDF
HTML
导出引用
  • 量子卫星通信是通信领域的研究热点和前沿, 具有理想的信息安全性和覆盖面广的优势, 对于构建全球范围的量子卫星广域网具有重要意义, 而远距离传输信息时网络的可靠性、安全性和路由中继等问题仍需改进. 为了构建性能良好的量子卫星广域网, 本文提出利用蜘蛛网作为一种独特的自然通信拓扑结构, 将自然界蛛网演进为人工蛛网拓扑, 量子信息的传输采用N阶量子隐形传态路由方案, 其传输时延基本不变, 在此基础上构建蛛网网络拓扑量子广域网传输模型, 并对构建的网络模型的误码率、吞吐率、安全密钥生成率进行仿真分析. 用抗毁度作为衡量网络拓扑结构可靠性的指标, 以9节点环型网和9节点蛛网为例进行定量和定性分析, 得出蛛网拓扑具有更高的可靠性. 当噪声的平均功率谱密度给定且不存在中继时, 量子态的传输距离越大误码率越大, 这时要考虑引入中继; 当传输距离和噪声功率谱密度一定的情况下, 误码率随着中继节点个数的增多而减小, 因此在蛛网拓扑下要选择合适的路由过程. 随着量子卫星分发纠缠光子对成功概率的增大, 吞吐率逐渐增加; 随着网络中传输时延的增大, 吞吐率逐渐减小, 但在该路由方案下传输时延基本不变, 且蛛网结构的传输时延很小, 因此本文中提出的基于N阶量子隐形传态的蛛网网络拓扑量子广域网的吞吐率不会有明显的降低. 当量子信息的传输距离不断增大时, 网络密钥生成率逐渐减小; 随着网络中继节点个数的增多, 密钥生成率逐渐增加. 由此可见, 利用蛛网拓扑以及N阶量子隐形传态路由方案构建量子卫星广域网具有很好的优势.
    Quantum satellite communication is a research hotspot and frontier in the field of communication. It has the advantages of ideal information security and wide coverage, which is of great significance in constructing a global quantum satellite wide area network. However, problems such as network reliability, security and routing relay still need to be improved when transmitting information over long distances. In this paper, the spider web is used as a unique natural communication topology to transform the natural spider web into an artificial spider web topology. The quantum information transmission adopts N-order quantum teleportation routing scheme, and the transmission delay is basically unchanged. On this basis, the spider web topology quantum wide area network transmission model is constructed. The bit error rate, throughput rate and security key generation rate of the network model are simulated and analyzed. Taking 9-node ring network and 9-node cobweb for example, the quantitative analysis and qualitative analysis are both conducted in this paper. The results show that the cobweb topology has higher reliability. When the average power spectral density of the noise is given and there is no relay, the bit error rate increases with the transmission distance increasing, so the introduction of relay should be considered. When the transmission distance and noise power spectral density are constant, the bit error rate decreases with the number of relay nodes increasing, so the appropriate routing process should be selected in the spider web topology. With the increase of the probability of transmitting entangled photon pairs, the throughput rate gradually increases. With the increase of transmission delay in the network, the throughput rate Q gradually decreases. However, the transmission delay is basically unchanged in this routing scheme, and the transmission delay of cobweb structure is very small. Therefore, the throughput rate of the topology quantum WAN of cobweb network based on N-order quantum teleportation proposed in this paper will not significantly decrease. When the transmission distance of quantum information increases, the network key generation rate decreases gradually. With the increase of the number of network relay nodes, the key generation rate increases gradually. Thus, it can be seen that using cobweb topology and N-order quantum teleportation routing scheme to construct a quantum satellite WAN has good advantages.
      通信作者: 韩凯捷, 3191696125@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61971348, 61201194)、陕西省国际科技合作与交流计划项目(批准号: 2015KW-013)和陕西省自然科学基础研究计划 (批准号: 2021JM-464)资助的课题
      Corresponding author: Han Kai-Jie, 3191696125@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971348, 61201194), the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013), and Natural Science Basic Research Program of Shaanxi, China (Grant No. 2021JM-464)
    [1]

    彭承志, 潘建伟 2016 中国科学院院刊 31 1096Google Scholar

    Peng Z C, Pan J W 2016 Bull. Chin. Acad. Sci. 31 1096Google Scholar

    [2]

    朱武 2016 硕士学位论文 (北京: 北京邮电大学)

    Zhu W 2016 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [3]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [4]

    Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Maimaiti A, Li C L, Zhang W J, Sun Q C, Liu W Y, Xiao J, Liao S K, Ren J G, Li H, You L X, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z, Pan J W 2020 Phys. Rev. Lett. 125 260503Google Scholar

    [5]

    Yin J, Li Y H, Liao S K, Meng Y, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Artur K. Ekert, Pan J W 2020 Nature 582 501

    [6]

    张志会, 马连轶 2018 中国科技论坛 34 1Google Scholar

    Zhang Z H, Ma L Y 2018 Forum Sci. Tech. Chin. 34 1Google Scholar

    [7]

    Liao S K, Cai W Q 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [8]

    周小清, 邬云文, 赵晗 2011 物理学报 60 040304Google Scholar

    Zhou X Q, Wu Y W, Zhao H 2011 Acta Phys. Sin. 60 040304Google Scholar

    [9]

    连涛, 聂敏 2012 光子学报 41 1251Google Scholar

    Lian T, Nie M 2012 Acta Photo. Sin. 41 1251Google Scholar

    [10]

    刘晓慧, 聂敏, 裴昌幸 2013 物理学报 62 200304Google Scholar

    Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304Google Scholar

    [11]

    聂敏, 郭建伟, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 激光与光电子学进展 57 1

    Nie M, Guo J W, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2021 Laser & Optoelect. Prog. 57 1

    [12]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F H, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214

    [13]

    卓春晖, 蒋平, 王昌河, 郭聪 2006 四川动物 26 898Google Scholar

    Zhuo C H, Jiang P, Wang C H, Guo C 2006 Sichuan J. Zoo 26 898Google Scholar

    [14]

    卓春晖 2007 硕士学位论文 (成都: 四川大学)

    Zhuo C H 2007 M. S. Thesis (Chengdu: Sichuan University) (in Chinese)

    [15]

    Liu X S, Zhang L, Lin J W 2010 First International Conference on Pervasive Computing, Signal Processing and Applications Harbin, China, September 17–19, 2010 p224

    [16]

    李彬 2013 硕士学位论文 (西安: 西安电子科技大学)

    Li B 2013 M.S. Thesis (Xi’an: Xidian University) (in Chinese)

    [17]

    赵振峰 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhao Z F 2013 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [18]

    刘晓胜, 张良, 周岩, 林建伟, 徐殿国 2012 中国电机工程学报 32 142Google Scholar

    Liu X S, Zhang L, Zhou Y, Lin J W, Xu D G 2012 Proc. CSEE 32 142Google Scholar

    [19]

    Bouwmeester D, Pan J W, Mattle K, Manfred E, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [20]

    Chen P, Deng F G, Long G L 2006 Chin. Phys. 15 2228Google Scholar

    [21]

    朱秋立, 石磊, 魏家华, 朱宇, 杨汝, 赵顾颢 2018 激光与光电子学进展 55 41

    Zhu Q L, Shi L, Wei J H, Zhu Y, Yang R, Zhao G H 2018 Laser & Optoelext. Prog. 55 41

    [22]

    朱畅华, 裴昌幸, 马怀新, 于晓飞 2006 西安电子科技大学学报 6 839

    Zhu C H, Pei C X, Ma H X, Yu X F 2006 J. Xidian. Univ. 6 839

    [23]

    李铁飞, 杨峰, 李伟, 崔树民 2015 电讯技术 55 959Google Scholar

    Li T F, Yang F, Li W, Cui S M 2015 Tele. Engin. 55 959Google Scholar

  • 图 1  自然界圆形蜘蛛网

    Fig. 1.  Round spider web in nature.

    图 2  蛛网结构图

    Fig. 2.  Cobweb structure diagram.

    图 3  人工蛛网演进过程 (a) 星型; (b) 环型; (c) 蛛网

    Fig. 3.  Evolution of artificial cobweb: (a) Star; (b) ring; (c) spiderweb.

    图 4  环型与蛛网拓扑的网络可靠性分析

    Fig. 4.  Network reliability analysis of ring and cobweb topologies.

    图 5  基于N阶量子隐形传态的量子路由方案

    Fig. 5.  Quantum routing scheme based on N-order quantum teleportation.

    图 6  二阶量子隐形传态逻辑线路图

    Fig. 6.  Second-order quantum teleportation logic circuit diagram.

    图 7  三阶量子隐形传态逻辑线路图

    Fig. 7.  Third-order quantum teleportation logic circuit diagram.

    图 8  三种路由方案量子态传输时间与中继节点个数的关系

    Fig. 8.  Relationship between the quantum state transfer time and the number of relay nodes.

    图 9  六边形逻辑蛛网拓扑模型

    Fig. 9.  Hexagonal logic spider web topology model.

    图 10  基于蛛网拓扑的量子卫星广域网

    Fig. 10.  Quantum satellite wide area network based on cobweb topology.

    图 11  误码率与传输距离的关系

    Fig. 11.  Relationship between BER and transmission distance.

    图 12  误码率与中继节点个数的关系

    Fig. 12.  Relationship between bit error rate and the number of relay nodes.

    图 13  吞吐率Q${P_1}$以及中继节点个数n的关系

    Fig. 13.  Relationship between throughput rate Q and P1 and the number of relay nodes n.

    图 14  吞吐率与传输时延的关系

    Fig. 14.  Relationship between throughput Q and transmission delay.

    图 15  密钥生成率与传输距离的关系

    Fig. 15.  Relationship between key generation rate and transmission distance.

    图 16  密钥生成率与中继节点个数的关系

    Fig. 16.  Relationship between key generation rate and number of relay nodes.

    表 1  已知测量结果后的量子门操作

    Table 1.  Quantum gate operation after known measurement results.

    $ {A}_{1} $异或$ {D}_{1} $$ {A}_{2} $异或$ {D}_{2} $量子门操作
    00
    01X
    10Z
    11X门和Z
    下载: 导出CSV

    表 2  已知测量结果后的量子门操作

    Table 2.  Quantum gate operation after known measurement results.

    $ {A}_{1} $异或$ {D}_{1} $异或$ {G}_{1} $$ {A}_{2} $异或$ {D}_{2} $异或$ {G}_{2} $量子门操作
    00
    01X
    10Z
    11X门和Z
    下载: 导出CSV

    表 3  量子信息传输误码率各参量含义

    Table 3.  Meaning of parameters of bit error rate in quantum information transmission.

    Lnλ$ {f}_{\rm{T}} $$ {f}_{\rm{R}} $$ {F}_{\rm{T}} $$ {F}_{\rm{R}} $$ {L}_{\rm{P}} $
    星地间传输距离中继节点个数光子波长发送端望远镜孔径接收端望远镜孔径发端望远镜传输因子收端望远镜传输因子链路损耗
    下载: 导出CSV
  • [1]

    彭承志, 潘建伟 2016 中国科学院院刊 31 1096Google Scholar

    Peng Z C, Pan J W 2016 Bull. Chin. Acad. Sci. 31 1096Google Scholar

    [2]

    朱武 2016 硕士学位论文 (北京: 北京邮电大学)

    Zhu W 2016 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [3]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [4]

    Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Maimaiti A, Li C L, Zhang W J, Sun Q C, Liu W Y, Xiao J, Liao S K, Ren J G, Li H, You L X, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z, Pan J W 2020 Phys. Rev. Lett. 125 260503Google Scholar

    [5]

    Yin J, Li Y H, Liao S K, Meng Y, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Artur K. Ekert, Pan J W 2020 Nature 582 501

    [6]

    张志会, 马连轶 2018 中国科技论坛 34 1Google Scholar

    Zhang Z H, Ma L Y 2018 Forum Sci. Tech. Chin. 34 1Google Scholar

    [7]

    Liao S K, Cai W Q 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [8]

    周小清, 邬云文, 赵晗 2011 物理学报 60 040304Google Scholar

    Zhou X Q, Wu Y W, Zhao H 2011 Acta Phys. Sin. 60 040304Google Scholar

    [9]

    连涛, 聂敏 2012 光子学报 41 1251Google Scholar

    Lian T, Nie M 2012 Acta Photo. Sin. 41 1251Google Scholar

    [10]

    刘晓慧, 聂敏, 裴昌幸 2013 物理学报 62 200304Google Scholar

    Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304Google Scholar

    [11]

    聂敏, 郭建伟, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 激光与光电子学进展 57 1

    Nie M, Guo J W, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2021 Laser & Optoelect. Prog. 57 1

    [12]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F H, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214

    [13]

    卓春晖, 蒋平, 王昌河, 郭聪 2006 四川动物 26 898Google Scholar

    Zhuo C H, Jiang P, Wang C H, Guo C 2006 Sichuan J. Zoo 26 898Google Scholar

    [14]

    卓春晖 2007 硕士学位论文 (成都: 四川大学)

    Zhuo C H 2007 M. S. Thesis (Chengdu: Sichuan University) (in Chinese)

    [15]

    Liu X S, Zhang L, Lin J W 2010 First International Conference on Pervasive Computing, Signal Processing and Applications Harbin, China, September 17–19, 2010 p224

    [16]

    李彬 2013 硕士学位论文 (西安: 西安电子科技大学)

    Li B 2013 M.S. Thesis (Xi’an: Xidian University) (in Chinese)

    [17]

    赵振峰 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhao Z F 2013 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [18]

    刘晓胜, 张良, 周岩, 林建伟, 徐殿国 2012 中国电机工程学报 32 142Google Scholar

    Liu X S, Zhang L, Zhou Y, Lin J W, Xu D G 2012 Proc. CSEE 32 142Google Scholar

    [19]

    Bouwmeester D, Pan J W, Mattle K, Manfred E, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [20]

    Chen P, Deng F G, Long G L 2006 Chin. Phys. 15 2228Google Scholar

    [21]

    朱秋立, 石磊, 魏家华, 朱宇, 杨汝, 赵顾颢 2018 激光与光电子学进展 55 41

    Zhu Q L, Shi L, Wei J H, Zhu Y, Yang R, Zhao G H 2018 Laser & Optoelext. Prog. 55 41

    [22]

    朱畅华, 裴昌幸, 马怀新, 于晓飞 2006 西安电子科技大学学报 6 839

    Zhu C H, Pei C X, Ma H X, Yu X F 2006 J. Xidian. Univ. 6 839

    [23]

    李铁飞, 杨峰, 李伟, 崔树民 2015 电讯技术 55 959Google Scholar

    Li T F, Yang F, Li W, Cui S M 2015 Tele. Engin. 55 959Google Scholar

  • [1] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [2] 王明宇, 王馨德, 阮东, 龙桂鲁. 量子直接传态. 物理学报, 2021, 70(19): 190301. doi: 10.7498/aps.70.20210837
    [3] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [4] 杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁. 基于量子隐形传态的量子保密通信方案. 物理学报, 2017, 66(23): 230303. doi: 10.7498/aps.66.230303
    [5] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用. 物理学报, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [6] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理. 物理学报, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [7] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用. 物理学报, 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [8] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 物理学报, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [9] 刘晓慧, 聂敏, 裴昌幸. 量子无线广域网构建与路由策略. 物理学报, 2013, 62(20): 200304. doi: 10.7498/aps.62.200304
    [10] 杨小琳, 周小清, 赵晗, 王朋朋. 基于量子隐形传态的数据链路层选择重传协议. 物理学报, 2012, 61(2): 020303. doi: 10.7498/aps.61.020303
    [11] 乔盼盼, 艾合买提·阿不力孜, 蔡江涛, 路俊哲, 麦麦提依明·吐孙, 日比古·买买提明. 利用热平衡态超导电荷量子比特实现量子隐形传态. 物理学报, 2012, 61(24): 240303. doi: 10.7498/aps.61.240303
    [12] 余旭涛, 徐进, 张在琛. 基于量子远程传态的无线自组织量子通信网络路由协议. 物理学报, 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [13] 周小清, 邬云文. 量子隐形传态网络的广播与组播. 物理学报, 2012, 61(17): 170303. doi: 10.7498/aps.61.170303
    [14] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度. 物理学报, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [15] 周小清, 邬云文, 赵晗. 量子隐形传态网络的互联与路由策略. 物理学报, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.2
    [16] 何锐, Bing He. 量子隐形传态的新方案. 物理学报, 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [17] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度. 物理学报, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [18] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨. 物理学报, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [19] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态. 物理学报, 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
    [20] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
计量
  • 文章访问数:  5234
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-24
  • 修回日期:  2021-04-26
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-07-20

/

返回文章
返回