搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限长管内包膜微泡在磁-声复合场作用下的振动行为

史慧敏 胡静 王成会 凤飞龙 莫润阳

引用本文:
Citation:

有限长管内包膜微泡在磁-声复合场作用下的振动行为

史慧敏, 胡静, 王成会, 凤飞龙, 莫润阳

Vibrational behavior of coated microbubble in finite tube under magneto-acoustic composite field

Shi Hui-Min, Hu Jing, Wang Cheng-Hui, Feng Fei-Long, Mo Run-Yang
PDF
HTML
导出引用
  • 磁声作用下的包膜微泡在治疗应用中具有极其重要的意义. 本文将包膜微泡置于充满磁流体的管中, 考虑在磁声场作用下磁流体受到的磁压力, 推导了微泡的径向振动方程; 并用韦伯数、雷诺数等特征量对其动力学方程无量纲化; 采用龙格库塔法分析了磁声场参数及磁流体特性对其振动行为的影响. 结果表明, 磁场会阻碍微泡塌缩并使其做稳定振荡. 声场一定时, 磁场能够稳定微泡的振荡, 增大振荡微泡的平衡半径; 磁场越强, 磁流体磁化率χm对微泡的振动影响越明显, χm较大时微泡瞬态响应的非线性更强; 较大的声场参数会增强振荡微泡对磁场的响应; 而磁场越强, 声参数对微泡振荡的影响越弱, 且微泡瞬态响应非线性明显但稳态响应保持小振幅的往复振荡. 可见, 通过调控磁声场有利于实现微泡在血管内的稳定振荡并避免塌缩.
    The dynamic behavior of coated microbubble in a magneto-acoustic field is very significant for its application to therapy. In this paper, the radial vibration equation of microbubble is derived by placing the coated-microbubbles in a tube filled with magnetic fluid and considering the magnetic pressure on the magnetic fluid under the magneto-acoustic field. The dynamic equation is nondimensionalized by using characteristic quantities such as Weber number and Reynolds number. The effects of magnetic-acoustic field parameters and magnetofluid characteristics on the vibration behavior of the vibration system are analyzed by the Runge-Kutta method. The results show that the magnetic field can prevent the collapse and make bubble oscillate stably. When the acoustic field is constant, the magnetic field can stabilize the oscillation of the microbubble and increase the equilibrium radius of the oscillating microbubble. The stronger the magnetic field is, the more obvious the influence of magnetofluid magnetisability χm on the vibration of the microbubble is and the stronger the nonlinear of the transient response of the microbubble is when the magnetic field is larger. In addition, the larger acoustic field parameters will enhance the response of oscillating microbubble to magnetic field. The larger the magnetic field is, the weaker the influence of acoustic parameters on the oscillations of microbubble is. Also, the transient response of microbubble is obviously nonlinear, but the steady-state response keeps the reciprocating oscillation with small amplitude. It can be seen that the adjusting of the magneto-acoustic field is beneficial to realizing the stable oscillation of microbubble in the blood vessel and avoiding collapse.
      通信作者: 莫润阳, mmrryycn@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074238, 11974232)资助的课题
      Corresponding author: Mo Run-Yang, mmrryycn@snnu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 12074238, 11974232)
    [1]

    Michalakis A A, Matthew F B, Jeffry E P, Paul S S, Peter N B 2020 Ultrasound Med. Bio. 46 498Google Scholar

    [2]

    Wischhusen J, Padilla F 2018 IRBM 40 10Google Scholar

    [3]

    Pysz M A, Foygel K, Rosenberg J, Gambhir S S, Schneider M, Willmann J K 2010 Radiology 256 519Google Scholar

    [4]

    Bekeredjian R, Grayburn P, Shohet R 2005 Am. Coll. Cardiol. 45 329Google Scholar

    [5]

    Hernot S, Klibanov A 2008 Adv. Drug Deliv. Rev. 60 1153Google Scholar

    [6]

    Martin M J, Chung E M L, Goodall A H 2008 J. Vasc. Surg. 47 1371Google Scholar

    [7]

    Owen J, Pankhurst Q, Stride E 2012 Int. J. Hyperthermia 28 362Google Scholar

    [8]

    Yvonn H, Staffan H, Alexandra H, Bernhard G, Martina A, Dietmar E, Daniela W, Alexander P, Markus W, Florian K, Ulrich P, Hanna M 2017 Theranostics 7 295Google Scholar

    [9]

    Iwanaga K, Tominaga K, Yamamoto K, Habu M, Maeda H, Akifusa S, Tsujisawa T, Okinaga T, Fukuda J, Nishihara T 2007 Cancer Gene Ther. 14 354Google Scholar

    [10]

    Fan C H, Cheng Y H, Ting C Y, Ho Y J, Hsu P H, Liu H L, Yeh C K 2016 Theranostics 6 1542Google Scholar

    [11]

    de Saint V M, Carugo D, Barnsley L C, Owen J, Coussios C-C, Stride E 2017 Phys. Med. Biol. 62 7451Google Scholar

    [12]

    Bi F, Zhang J, Su Y J, Chun Y J, Tang Ya, Liu J N 2009 Biomaterials 30 5125Google Scholar

    [13]

    Mulvana H, Eckersley R J, Tang M X, Pankhurst Q, Stride E 2012 Ultrasound Med. Biol. 38 864Google Scholar

    [14]

    Yan L P, Miao W, Li D D 2020 J. Nanotechno. 20 6087Google Scholar

    [15]

    Lind, Steven J 2014 Phys. Fluids 6 26Google Scholar

    [16]

    Malvar S, Gontijo R G, Cunha F R 2018 J. Eng. Math. 108 143Google Scholar

    [17]

    Church C C 1995 J. Acoust. Soc. Am. 97 1510Google Scholar

    [18]

    赵丽霞, 王成会, 莫润阳 2021 物理学报 70 014301Google Scholar

    Zhao L X, Wang C H, Mo R Y 2021 Acta Phys. Sin. 70 014301Google Scholar

    [19]

    Sassaroli E, Hynynen K 2005 Phys. Med. Biol. 50 5293Google Scholar

    [20]

    Ni B Y, Zhang A M, Wang Q X, Wang B 2012 Acta. Mechanica Sinica. 28 1248Google Scholar

    [21]

    Fan Y Z, Li H S, Daniel F 2020 Phys. Week 102 013105Google Scholar

    [22]

    Qin S P, Ferrara K W 2006 Phys. Med. Biol. 51 5065Google Scholar

    [23]

    Owen J, Rademeyer P, Chung D, Cheng Q, Holroyd D, Coussios C, Friend P, Pankhurst Q A, Stride E 2015 Interface Focus 5 20150001Google Scholar

    [24]

    Beguin E, Gray M D, Logan K A, Nesbitt H, Sheng Y J, Kamila S, Barnsley L C, Bau L, McHale A P, Callan J F, Stride E 2020 J. Controlled Release 317 23Google Scholar

    [25]

    Zhang B H, Kim H, Jiang X N 2019 Ultrasonics 98 62Google Scholar

    [26]

    Droste D W 2008 Eur. Neurol. 1 2Google Scholar

    [27]

    莫润阳, 吴临燕, 詹思楠, 张引红 2015 物理学报 64 124301Google Scholar

    Mo R Y, Wu L Y, Zhan S N, Zhang Y H 2015 Acta Phys. Sin. 64 124301Google Scholar

    [28]

    Zudin Y B, Isakov N S, Zenin V V 2014 J. Eng. Thermophys. 87 1487Google Scholar

    [29]

    Stride E 2008 Philos. T. R. Soc. A 366 2103Google Scholar

    [30]

    Stride E, Porter C, Prieto A G, Pankhurst Q 2009 Ultrasound Med. Biol. 35 861Google Scholar

    [31]

    毕勤成, 施东晓, 何永清, 邱晟华 2010 热科学与技术 9 189

    Bi Q C, Shi D X, He Y Q, Qiu S H 2010 J. Ther. Sci. Techno. 9 189

    [32]

    陈杰, 张杰, 莫润阳, 王成会, 胡静 2020 磁性材料及器件 51 9

    Chen J, Zhang J, Mo R Y, Wang C H, Hu J 2020 J. Magn. Mater. Device 51 9

    [33]

    Owen J, Grove P, Rademeyer P, Stride E 2014 J. R. Soc. Interface 11 20140622Google Scholar

    [34]

    Victor M S, Crake C, Coussios C C, Stride E 2014 Expert Opin. Drug Del. 11 87Google Scholar

  • 图 1  管内包膜微泡在磁声混合场作用下的几何模型

    Fig. 1.  Geometric model of the microbubble in a tube under magneto-acoustic mixing field.

    图 2  无磁场存在(Remag$ {\infty } $)时, 管内微泡在声场驱动下的振荡特性 (a) R*-t*图; (b) PG/P0-t*图; (c) 振动相图 (We = 5, a = 2, ω = 1)

    Fig. 2.  When magnetic field is absent (Remag$ {\infty } $), the oscillation characteristics of the microbubble in a tube driven by acoustic field(We = 5, a = 2, ω = 1): (a) R*-t* plot; (b) PG/P0-t* plot; (c) the vibration phase diagram (We = 5, a = 2, ω = 1).

    图 3  振荡微泡的磁场响应, 其中包括(a)—(c) R*-t*图及对应(d)—(f)相图(We = 5, a = 2, ω = 1, χm = 0.1) (a), (d) Remag = 10; (b), (e) Remag = 1; (c), (f) Remag = 0.5

    Fig. 3.  Magnetic field response of the oscillating microbubble (We = 5, a = 2, ω = 1, χm = 0.1), including (a)−(c) R*-t* plot and corresponding (d)−(f) phase diagram: (a), (d) Remag = 10; (b), (e) Remag = 1; (c), (f) Remag = 0.5.

    图 4  磁化率χm不同的磁流体中振荡微泡的磁场响应, 其中包括(a)—(c) R*t*图及相应(d)—(f)相图(We = 5, a = 2, ω = 1) (a), (d) Remag = 10; (b), (e) Remag = 1; (c), (f) Remag = 0.5

    Fig. 4.  Magnetic field response of the oscillating microbubble in the magnetic fluid with different susceptibility χm (We = 5, a = 2, ω = 1), including (a)−(c) R*t* plot and corresponding (d)−(f) phase diagram: (a), (d) Remag = 10; (b), (e) Remag = 1; (c), (f) Remag = 0.5

    图 5  ω = 5时振荡微泡的磁响应, 其中包括(a)—(c) R*-t*图及相应(d)—(f)相图(We =10, a = 2, χm = 1) (a), (d) Remag$ {\infty } $; (b), (e) Remag = 1; (c), (f) Remag = 0.5

    Fig. 5.  Magnetic response of the oscillating microbubble at ω = 5 (We = 10, a = 2, χm = 1), including (a)−(c) R*-t* plot and corresponding (d)−(f) phase diagram: (a), (d) Remag$ {\infty } $; (b), (e) Remag = 1; (c), (f) Remag = 0.5.

    图 6  ω = 10时振荡微泡的磁响应, 其中包括(a)—(c) R*-t*图及相应(d)—(f)相图(We = 10, a = 2, χm = 1) (a), (d) Remag$ {\infty } $; (b), (e) Remag = 1; (c), (f) Remag = 0.5

    Fig. 6.  Magnetic response of the oscillating microbubble at ω = 10 (We = 10, a = 2, χm = 1), including (a)−(c) R*-t* plot and corresponding (d)−(f) phase diagram: (a), (d) Remag$ {\infty } $; (b), (e) Remag = 1; (c), (f) Remag = 0.5.

    图 7  声压幅值不同时振荡微泡的磁响应R*-t*图 (We = 10, χm = 1) (a)—(c) 磁雷诺数Remag分别为$ {\infty } $, 1和0.5; (d)—(f)声压幅值a分别为2, 1和0.5

    Fig. 7.  Magnetic response of the oscillating microbubble with different acoustic pressure amplitudes (We = 10, χm = 1): (a)−(c) magnetic Reynolds number Remag is $ {\infty } $, 1 and 0.5, respectively; (d)−(f) acoustic pressure a is 2, 1 and 0.5, respectively.

    图 8  不同环境条件下微泡的振动响应R*-t*图 (Remag = 0.5)

    Fig. 8.  Vibration response of the microbubble under different environmental conditions (Remag = 0.5)

  • [1]

    Michalakis A A, Matthew F B, Jeffry E P, Paul S S, Peter N B 2020 Ultrasound Med. Bio. 46 498Google Scholar

    [2]

    Wischhusen J, Padilla F 2018 IRBM 40 10Google Scholar

    [3]

    Pysz M A, Foygel K, Rosenberg J, Gambhir S S, Schneider M, Willmann J K 2010 Radiology 256 519Google Scholar

    [4]

    Bekeredjian R, Grayburn P, Shohet R 2005 Am. Coll. Cardiol. 45 329Google Scholar

    [5]

    Hernot S, Klibanov A 2008 Adv. Drug Deliv. Rev. 60 1153Google Scholar

    [6]

    Martin M J, Chung E M L, Goodall A H 2008 J. Vasc. Surg. 47 1371Google Scholar

    [7]

    Owen J, Pankhurst Q, Stride E 2012 Int. J. Hyperthermia 28 362Google Scholar

    [8]

    Yvonn H, Staffan H, Alexandra H, Bernhard G, Martina A, Dietmar E, Daniela W, Alexander P, Markus W, Florian K, Ulrich P, Hanna M 2017 Theranostics 7 295Google Scholar

    [9]

    Iwanaga K, Tominaga K, Yamamoto K, Habu M, Maeda H, Akifusa S, Tsujisawa T, Okinaga T, Fukuda J, Nishihara T 2007 Cancer Gene Ther. 14 354Google Scholar

    [10]

    Fan C H, Cheng Y H, Ting C Y, Ho Y J, Hsu P H, Liu H L, Yeh C K 2016 Theranostics 6 1542Google Scholar

    [11]

    de Saint V M, Carugo D, Barnsley L C, Owen J, Coussios C-C, Stride E 2017 Phys. Med. Biol. 62 7451Google Scholar

    [12]

    Bi F, Zhang J, Su Y J, Chun Y J, Tang Ya, Liu J N 2009 Biomaterials 30 5125Google Scholar

    [13]

    Mulvana H, Eckersley R J, Tang M X, Pankhurst Q, Stride E 2012 Ultrasound Med. Biol. 38 864Google Scholar

    [14]

    Yan L P, Miao W, Li D D 2020 J. Nanotechno. 20 6087Google Scholar

    [15]

    Lind, Steven J 2014 Phys. Fluids 6 26Google Scholar

    [16]

    Malvar S, Gontijo R G, Cunha F R 2018 J. Eng. Math. 108 143Google Scholar

    [17]

    Church C C 1995 J. Acoust. Soc. Am. 97 1510Google Scholar

    [18]

    赵丽霞, 王成会, 莫润阳 2021 物理学报 70 014301Google Scholar

    Zhao L X, Wang C H, Mo R Y 2021 Acta Phys. Sin. 70 014301Google Scholar

    [19]

    Sassaroli E, Hynynen K 2005 Phys. Med. Biol. 50 5293Google Scholar

    [20]

    Ni B Y, Zhang A M, Wang Q X, Wang B 2012 Acta. Mechanica Sinica. 28 1248Google Scholar

    [21]

    Fan Y Z, Li H S, Daniel F 2020 Phys. Week 102 013105Google Scholar

    [22]

    Qin S P, Ferrara K W 2006 Phys. Med. Biol. 51 5065Google Scholar

    [23]

    Owen J, Rademeyer P, Chung D, Cheng Q, Holroyd D, Coussios C, Friend P, Pankhurst Q A, Stride E 2015 Interface Focus 5 20150001Google Scholar

    [24]

    Beguin E, Gray M D, Logan K A, Nesbitt H, Sheng Y J, Kamila S, Barnsley L C, Bau L, McHale A P, Callan J F, Stride E 2020 J. Controlled Release 317 23Google Scholar

    [25]

    Zhang B H, Kim H, Jiang X N 2019 Ultrasonics 98 62Google Scholar

    [26]

    Droste D W 2008 Eur. Neurol. 1 2Google Scholar

    [27]

    莫润阳, 吴临燕, 詹思楠, 张引红 2015 物理学报 64 124301Google Scholar

    Mo R Y, Wu L Y, Zhan S N, Zhang Y H 2015 Acta Phys. Sin. 64 124301Google Scholar

    [28]

    Zudin Y B, Isakov N S, Zenin V V 2014 J. Eng. Thermophys. 87 1487Google Scholar

    [29]

    Stride E 2008 Philos. T. R. Soc. A 366 2103Google Scholar

    [30]

    Stride E, Porter C, Prieto A G, Pankhurst Q 2009 Ultrasound Med. Biol. 35 861Google Scholar

    [31]

    毕勤成, 施东晓, 何永清, 邱晟华 2010 热科学与技术 9 189

    Bi Q C, Shi D X, He Y Q, Qiu S H 2010 J. Ther. Sci. Techno. 9 189

    [32]

    陈杰, 张杰, 莫润阳, 王成会, 胡静 2020 磁性材料及器件 51 9

    Chen J, Zhang J, Mo R Y, Wang C H, Hu J 2020 J. Magn. Mater. Device 51 9

    [33]

    Owen J, Grove P, Rademeyer P, Stride E 2014 J. R. Soc. Interface 11 20140622Google Scholar

    [34]

    Victor M S, Crake C, Coussios C C, Stride E 2014 Expert Opin. Drug Del. 11 87Google Scholar

  • [1] 李伟健, 周晓艳, 陆杭军. 无阀纳米泵中水流的反常堵塞. 物理学报, 2024, 73(9): 094702. doi: 10.7498/aps.73.20240115
    [2] 黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 基于干式制冷的低温扫描探针显微镜研究进展. 物理学报, 2024, 73(22): 228701. doi: 10.7498/aps.73.20241367
    [3] 索鼎杰, 纪镇祥, 黄晓雲, 靳杰, 闫天翼. 非线性声场下包膜微泡动力学与频率响应分析. 物理学报, 2024, 73(7): 074701. doi: 10.7498/aps.73.20231898
    [4] 黄晨阳, 李凡, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 空化场中大气泡对空化泡振动的抑制效应分析. 物理学报, 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [5] 张雅婧, 王铭浩, 雷照康, 申文洁, 马嫣嫱, 莫润阳. 多层膜结构载磁微泡声散射特性. 物理学报, 2022, 71(18): 184302. doi: 10.7498/aps.71.20220847
    [6] 史慧敏, 莫润阳, 王成会. 磁流体管内“泡对”在磁声复合场中的振荡行为. 物理学报, 2022, 71(8): 084302. doi: 10.7498/aps.71.20212150
    [7] 赵丽霞, 王成会, 莫润阳. 多层膜磁性微泡的非线性声振动特性. 物理学报, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [8] 秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡. 组织内包膜微泡声空化动力学及其力学效应分析. 物理学报, 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [9] 周博睿, 谈宜东, 沈学举, 朱开毅, 鲍丽萍. 微泡造影剂增强超声调制激光回馈成像对比度的机理研究. 物理学报, 2019, 68(21): 214304. doi: 10.7498/aps.68.20190770
    [10] 赵章风, 张文俊, 牛丽丽, 孟龙, 郑海荣. 基于微泡共振的快速微流体声学混合方法研究. 物理学报, 2018, 67(19): 194302. doi: 10.7498/aps.67.20180705
    [11] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [12] 南一冰, 唐义, 张丽君, 常月娥, 陈廷爱. 一种卫星平台振动光谱成像数据分块校正方法. 物理学报, 2014, 63(1): 010701. doi: 10.7498/aps.63.010701
    [13] 邵纬航, 陈伟中. 非球形包膜微泡近场局部高压研究. 物理学报, 2014, 63(20): 204702. doi: 10.7498/aps.63.204702
    [14] 胡格丽, 倪志鹏, 王秋良. 结合振动控制的柱面纵向梯度线圈目标场设计方法. 物理学报, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [15] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动. 物理学报, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [16] 梁金福, 陈伟中, 邵纬航, 周超, 杜联芳, 金利芳. 观测包膜微泡在超声场中的动力学行为. 物理学报, 2013, 62(8): 084708. doi: 10.7498/aps.62.084708
    [17] 唐秋艳, 唐义, 曹玮亮, 王静, 南一冰, 倪国强. 卫星平台复杂振动引起的光谱成像退化仿真研究. 物理学报, 2012, 61(7): 070202. doi: 10.7498/aps.61.070202
    [18] 冯海冉, 李鹏, 郑雨军, 丁世良. 用李代数方法解析研究线性三原子分子振动的动力学纠缠. 物理学报, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [19] 赵永志, 江茂强, 郑津洋. 巴西果效应分离过程的计算颗粒力学模拟研究. 物理学报, 2009, 58(3): 1812-1818. doi: 10.7498/aps.58.1812
    [20] 姜泽辉, 陆坤权, 厚美瑛, 陈 唯, 陈相君. 振动颗粒混合物中的三明治式分离. 物理学报, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
计量
  • 文章访问数:  3426
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-24
  • 修回日期:  2021-05-12
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回