-
为研制大电流密度光电阴极, 提出了一种制备锑铯光电阴极的新方法, 采用专门的离子轰击技术使无氧铜表面纹理化, 提高其吸附性能和光的吸收率, 从而相对于未经处理的无氧铜可以大幅提高光电发射的性能. 研究了表面处理前后的无氧铜基体锑铯光电阴极的发射特性. 利用扫描电子显微镜分析了其表面结构, 处理后的无氧铜为表面无颗粒、坚固、结构均匀的全金属结构体, 使用此工艺无需修改无氧铜加工、焊接或其他光电阴极常规制造工艺. 实验中, 获得的无氧铜基体处理前后的光电阴极稳定发射的最大的光电发射电流密度分别为60.5和146.0 mA/cm2, 计算出相应的量子效率分别为2.67 × 10–3和1.71 × 10–2, 可知量子效率提高了5.41倍. 分析认为, 表面改性后的光电阴极的量子效率提高的主要原因来自于光吸收率的提高以及发射表面积增大.To meet the needs of high-frequency, miniaturized vacuum microwave devices, a new photocathode for microwave vacuum electronic device has been studied. Untreated oxygen-free copper, commonly used for photocathode substrate, exhibits relatively high photoemission characteristics. In this paper, we describe a specialized ion-beam bombardment procedure for textured copper surfaces, thereby improving the photoemission properties relative to untreated copper. The emission characteristics of antimony cesium photocathode on oxygen-free copper substrate before and after surface treatment are studied The photoemission and texture of post-treated oxygen-free copper surface are examined by scanning electron microscope. The results show that the treated surface has a particle-free, robust, uniformly highly-textured all-metal structure. This processing technology does not require to modify the copper machining and brazing, nor normal fabrication procedures of other photocathodes. In the experiment, the maximum photoemission current density of photocathode for the untreated substrate is 60.5 and that for the treated substrate is 146.0 mA/cm2, and their corresponding quantum efficiencies are calculated to be 2.67 × 10–3 and 1.71 × 10–2, respectively. So, the quantum efficiency is enhanced by 6.41 times. The analysis indicates that the improvement of the quantum efficiency of the treated photocathode is mainly due to the enhancement of the light absorption rate. The results show that the photoemission is enhanced significantly after the substrate has been treated, and there is still much room for improvement.
-
Keywords:
- photocathode /
- ion surface treatment /
- driven by laser /
- quantum yield
[1] Liu Y W, Wang X X, Lu Y X 2019 IEEE Trans. Electron. Devices 66 5321Google Scholar
[2] Shin Y M, Barnett L R, Gamzina D 2009 Appl. Phys. Lett. 95 181505Google Scholar
[3] Sirigiri J R, Shaprio M A, Temkin R J 2003 Phys. Rev. Lett. 90 258302Google Scholar
[4] 刘燕文, 田宏 2008 中国科学E辑: 技术科学 38 1515
Liu Y W, Tian H 2008 Sci. China Ser. E: Technol. Sci. 38 1515
[5] Liu Y W, Tian H 2008 Sci. China Ser. E: Technol. Sci. 51 1497Google Scholar
[6] Raju R S, Maloney C E 1994 IEEE Trans. Electron. Devices 41 2460Google Scholar
[7] Wang J S, Liu W 2009 IEEE Trans. Electron. Devices 56 799Google Scholar
[8] Wang X X, Liu Y W 2014 IEEE Trans. Electron. Devices 61 605Google Scholar
[9] Gaertner G, Janiel P, Raasch D, et al. 2002 Appl. Surf. Sci. 201 35Google Scholar
[10] 刘燕文, 田宏, 韩勇, 等 2009 物理学报 58 8635Google Scholar
Liu Y W, Tian H, Han Y, et al. 2009 Acta. Phys. Sin. 58 8635Google Scholar
[11] 刘燕文, 刘胜英, 田宏, 等 2006 真空科学与技术学报 26 240Google Scholar
Liu Y W, Liu S Y, Tian H, et al. 2006 Chin. J. Vacuum Sci. Technol. 26 240Google Scholar
[12] Barika R K, Beraa A, Rajub R S, et al. 2013 Appl. Surf. Sci. 276 817Google Scholar
[13] Isagawa S, Higuchi T, Kobayashi K, et al. 1999 Appl. Surf. Sci. 146 89Google Scholar
[14] Zhu J, Wang S L, Xie S H, et al. 2011 Chem. Commun. 47 4403Google Scholar
[15] Wang H L, Hao Q L, Yang X J, et al. 2010 Nanoscale 2 2164Google Scholar
[16] Whaley D, Duggal R, Armstrong C, et al. 2013 IEEE Proceedings of 14th International Vacuum Electronics Conference Paris, France, May 21–23, 2013 pp203−204
[17] 刘燕文, 王国建, 田宏, 等 2021 中国科学: 信息科学 51 1575Google Scholar
Liu Y W, Wang G J, Tian H, et al. 2021 Sci. Sin. Inf 51 1575Google Scholar
[18] 刘燕文, 张耿民, 刘惟敏, 等 1996 北京大学学报 32 96Google Scholar
Liu Y W, Zhang G M, W M, et al. 1996 Acta Sci. Natur. Univ. Pekine. 32 96Google Scholar
[19] Somer A H 1963 Appl. Phys. Lett. 3 62Google Scholar
[20] Lee C H 1985 IEEE Trans. Nucl. Sci. 32 3045Google Scholar
[21] 刘燕文, 张耿民, 刘惟敏, 等 1996 中国激光 23 255Google Scholar
Liu Y W, Zhang G M, Liu W M, et al. 1996 Chin. J. Lasers 23 255Google Scholar
[22] Liu Y W, Zhang G M, Liu W M, et al. 1996 Nucl. Instrum. Methods Phys. Res., Sect. A 376 146Google Scholar
[23] 张耿民, 吴全德 1997 北京大学学报 33 97Google Scholar
Zhang G M, Wu Q D 1997 Acta. Sci. Natur. Univ. Pekine. 33 97Google Scholar
[24] 张篁, 陈德彪 2010 强激光与粒子束 22 583Google Scholar
Zhang H, Chen D B 2010 High Power Laser Part. Beams 22 583Google Scholar
[25] 杜晓晴, 常本康, 钱芸生, 等 2010 中国激光 37 385Google Scholar
Du X Q, Chang B K, Qian Y S, et al. 2010 Chin. J. Lasers 37 385Google Scholar
[26] 罗毅, 于汪洋, 王健 2018 中国科学: 信息科学 48 688Google Scholar
Luo Y, Yu W Y, Wang J 2018 Sci. Sin. Inf. 48 688Google Scholar
[27] 李雅瑶, 王越, 杨德仁 2020 中国科学: 信息科学 50 892Google Scholar
Li Y Y, Wang Y, Yang D R 2020 Sci. Sin. Inf. 50 892Google Scholar
[28] 郝广辉, 韩攀阳, 李兴辉, 等 2020 物理学报 69 108501Google Scholar
Hao G H, Han Y, Li X H, et al. 2020 Acta Phys. Sin. 69 108501Google Scholar
[29] 刘燕文, 田宏, 陆玉新, 等 2019 真空 56 7Google Scholar
Liu Y W, Tian H, Lu Y X, et al. 2019 Vacuum 56 7Google Scholar
[30] 刘燕文, 田宏, 李芬, 等. 中国发明专利 201810512769X [2018-05-24]
Liu Y W, Tian H, Shi W Q, et al. Chin. Patent 201810512769X [2018-05-24] (in Chinese)
[31] Curren A N, Kenneth A J, Robert F R 1993 Proceedings of IEEE International Electron Devices Meeting Washington, DC, USA, December 5−8, 1993 p4811091
[32] Ding M Q, Huang M G, Feng J J 2008 Appl. Surf. Sci. 255 2196Google Scholar
[33] 韩冰, 李超, 唐智勇 2011 物理 40 566
Han B, Li C, Tang Z Y 2011 Physics 40 566
[34] Halperin W P 1986 Rev. Mod. Phys. 58 533Google Scholar
[35] 马腾宇, 李万俊, 何先旺, 等 2020 物理学报 69 108102Google Scholar
Ma T Y, Li W J, He X W, et al. 2020 Acta. Phys. Sin. 69 108102Google Scholar
[36] Wang J S, Zhang X Z, Liu W, et al. 2012 Sci. Sin. Inf. 55 98Google Scholar
[37] Shin Y M, Zhao J F, Larry R B, et al. 2010 Phys. Plasma 17 123105Google Scholar
[38] Han Y, Liu Y W, Ding Y G, et al. 2009 IEEE Electron. Device Lett. 30 820Google Scholar
[39] 刘燕文, 王小霞, 田宏, 等 2015 中国科学: 信息科学 45 145Google Scholar
Liu Y W, Wang X X, Tian H, et al. 2015 Sci. Sin. Inf. 45 145Google Scholar
[40] Liu Y W, Tian H, Han Y 2012 IEEE Trans. Eletron. Devices 59 I36184Google Scholar
[41] Kalarasse L, Bennecer B, Kalarasse F 2010 J. Phys. Chem. Solids 71 314Google Scholar
[42] Wang G X, Pandey R, Moody N A, Batista E R 2017 J. Phys. Chem. 121 8399Google Scholar
[43] 刘燕文, 张耿民, 刘惟敏, 等 1995 真空科学与技术学报 15 304Google Scholar
Liu Y W, Zhang G M, Liu W M, et al. 1995 Chin. J. Vac. Sci. Technol. 15 304Google Scholar
[44] 刘燕文, 孟宪展, 田宏, 等 2018 真空 55 25Google Scholar
Liu Y W, Meng X Z, Tian H, et al. 2018 Vacuum 55 25Google Scholar
[45] 郎兴凯, 贾鹏, 陈泳屹, 等 2019 中国科学: 信息科学 49 649Google Scholar
Lang X K, Jia P, Chen Y Y, et al. 2019 Sci. Sin. Inf. 49 649Google Scholar
-
-
[1] Liu Y W, Wang X X, Lu Y X 2019 IEEE Trans. Electron. Devices 66 5321Google Scholar
[2] Shin Y M, Barnett L R, Gamzina D 2009 Appl. Phys. Lett. 95 181505Google Scholar
[3] Sirigiri J R, Shaprio M A, Temkin R J 2003 Phys. Rev. Lett. 90 258302Google Scholar
[4] 刘燕文, 田宏 2008 中国科学E辑: 技术科学 38 1515
Liu Y W, Tian H 2008 Sci. China Ser. E: Technol. Sci. 38 1515
[5] Liu Y W, Tian H 2008 Sci. China Ser. E: Technol. Sci. 51 1497Google Scholar
[6] Raju R S, Maloney C E 1994 IEEE Trans. Electron. Devices 41 2460Google Scholar
[7] Wang J S, Liu W 2009 IEEE Trans. Electron. Devices 56 799Google Scholar
[8] Wang X X, Liu Y W 2014 IEEE Trans. Electron. Devices 61 605Google Scholar
[9] Gaertner G, Janiel P, Raasch D, et al. 2002 Appl. Surf. Sci. 201 35Google Scholar
[10] 刘燕文, 田宏, 韩勇, 等 2009 物理学报 58 8635Google Scholar
Liu Y W, Tian H, Han Y, et al. 2009 Acta. Phys. Sin. 58 8635Google Scholar
[11] 刘燕文, 刘胜英, 田宏, 等 2006 真空科学与技术学报 26 240Google Scholar
Liu Y W, Liu S Y, Tian H, et al. 2006 Chin. J. Vacuum Sci. Technol. 26 240Google Scholar
[12] Barika R K, Beraa A, Rajub R S, et al. 2013 Appl. Surf. Sci. 276 817Google Scholar
[13] Isagawa S, Higuchi T, Kobayashi K, et al. 1999 Appl. Surf. Sci. 146 89Google Scholar
[14] Zhu J, Wang S L, Xie S H, et al. 2011 Chem. Commun. 47 4403Google Scholar
[15] Wang H L, Hao Q L, Yang X J, et al. 2010 Nanoscale 2 2164Google Scholar
[16] Whaley D, Duggal R, Armstrong C, et al. 2013 IEEE Proceedings of 14th International Vacuum Electronics Conference Paris, France, May 21–23, 2013 pp203−204
[17] 刘燕文, 王国建, 田宏, 等 2021 中国科学: 信息科学 51 1575Google Scholar
Liu Y W, Wang G J, Tian H, et al. 2021 Sci. Sin. Inf 51 1575Google Scholar
[18] 刘燕文, 张耿民, 刘惟敏, 等 1996 北京大学学报 32 96Google Scholar
Liu Y W, Zhang G M, W M, et al. 1996 Acta Sci. Natur. Univ. Pekine. 32 96Google Scholar
[19] Somer A H 1963 Appl. Phys. Lett. 3 62Google Scholar
[20] Lee C H 1985 IEEE Trans. Nucl. Sci. 32 3045Google Scholar
[21] 刘燕文, 张耿民, 刘惟敏, 等 1996 中国激光 23 255Google Scholar
Liu Y W, Zhang G M, Liu W M, et al. 1996 Chin. J. Lasers 23 255Google Scholar
[22] Liu Y W, Zhang G M, Liu W M, et al. 1996 Nucl. Instrum. Methods Phys. Res., Sect. A 376 146Google Scholar
[23] 张耿民, 吴全德 1997 北京大学学报 33 97Google Scholar
Zhang G M, Wu Q D 1997 Acta. Sci. Natur. Univ. Pekine. 33 97Google Scholar
[24] 张篁, 陈德彪 2010 强激光与粒子束 22 583Google Scholar
Zhang H, Chen D B 2010 High Power Laser Part. Beams 22 583Google Scholar
[25] 杜晓晴, 常本康, 钱芸生, 等 2010 中国激光 37 385Google Scholar
Du X Q, Chang B K, Qian Y S, et al. 2010 Chin. J. Lasers 37 385Google Scholar
[26] 罗毅, 于汪洋, 王健 2018 中国科学: 信息科学 48 688Google Scholar
Luo Y, Yu W Y, Wang J 2018 Sci. Sin. Inf. 48 688Google Scholar
[27] 李雅瑶, 王越, 杨德仁 2020 中国科学: 信息科学 50 892Google Scholar
Li Y Y, Wang Y, Yang D R 2020 Sci. Sin. Inf. 50 892Google Scholar
[28] 郝广辉, 韩攀阳, 李兴辉, 等 2020 物理学报 69 108501Google Scholar
Hao G H, Han Y, Li X H, et al. 2020 Acta Phys. Sin. 69 108501Google Scholar
[29] 刘燕文, 田宏, 陆玉新, 等 2019 真空 56 7Google Scholar
Liu Y W, Tian H, Lu Y X, et al. 2019 Vacuum 56 7Google Scholar
[30] 刘燕文, 田宏, 李芬, 等. 中国发明专利 201810512769X [2018-05-24]
Liu Y W, Tian H, Shi W Q, et al. Chin. Patent 201810512769X [2018-05-24] (in Chinese)
[31] Curren A N, Kenneth A J, Robert F R 1993 Proceedings of IEEE International Electron Devices Meeting Washington, DC, USA, December 5−8, 1993 p4811091
[32] Ding M Q, Huang M G, Feng J J 2008 Appl. Surf. Sci. 255 2196Google Scholar
[33] 韩冰, 李超, 唐智勇 2011 物理 40 566
Han B, Li C, Tang Z Y 2011 Physics 40 566
[34] Halperin W P 1986 Rev. Mod. Phys. 58 533Google Scholar
[35] 马腾宇, 李万俊, 何先旺, 等 2020 物理学报 69 108102Google Scholar
Ma T Y, Li W J, He X W, et al. 2020 Acta. Phys. Sin. 69 108102Google Scholar
[36] Wang J S, Zhang X Z, Liu W, et al. 2012 Sci. Sin. Inf. 55 98Google Scholar
[37] Shin Y M, Zhao J F, Larry R B, et al. 2010 Phys. Plasma 17 123105Google Scholar
[38] Han Y, Liu Y W, Ding Y G, et al. 2009 IEEE Electron. Device Lett. 30 820Google Scholar
[39] 刘燕文, 王小霞, 田宏, 等 2015 中国科学: 信息科学 45 145Google Scholar
Liu Y W, Wang X X, Tian H, et al. 2015 Sci. Sin. Inf. 45 145Google Scholar
[40] Liu Y W, Tian H, Han Y 2012 IEEE Trans. Eletron. Devices 59 I36184Google Scholar
[41] Kalarasse L, Bennecer B, Kalarasse F 2010 J. Phys. Chem. Solids 71 314Google Scholar
[42] Wang G X, Pandey R, Moody N A, Batista E R 2017 J. Phys. Chem. 121 8399Google Scholar
[43] 刘燕文, 张耿民, 刘惟敏, 等 1995 真空科学与技术学报 15 304Google Scholar
Liu Y W, Zhang G M, Liu W M, et al. 1995 Chin. J. Vac. Sci. Technol. 15 304Google Scholar
[44] 刘燕文, 孟宪展, 田宏, 等 2018 真空 55 25Google Scholar
Liu Y W, Meng X Z, Tian H, et al. 2018 Vacuum 55 25Google Scholar
[45] 郎兴凯, 贾鹏, 陈泳屹, 等 2019 中国科学: 信息科学 49 649Google Scholar
Lang X K, Jia P, Chen Y Y, et al. 2019 Sci. Sin. Inf. 49 649Google Scholar
计量
- 文章访问数: 4346
- PDF下载量: 48
- 被引次数: 0