搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新的具有宽参数范围的五维保守超混沌系统的动力学研究

张泽峰 黄丽莲 项建弘 刘帅

引用本文:
Citation:

新的具有宽参数范围的五维保守超混沌系统的动力学研究

张泽峰, 黄丽莲, 项建弘, 刘帅

Dynamic study of a new five-dimensional conservative hyperchaotic system with wide parameter range

Zhang Ze-Feng, Huang Li-Lian, Xiang Jian-Hong, Liu Shuai
PDF
HTML
导出引用
  • 保守系统因为没有吸引子, 与常见的耗散系统相比, 它的遍历性更好, 伪随机性更强, 安全性更高, 更适合应用于混沌保密通信等领域. 基于此, 设计了一个新的具有宽参数范围的五维保守超混沌系统. 首先, 进行 Hamilton 能量和 Casimir 能量分析, 证明了新系统满足 Hamilton 能量保守且能够产生混沌. 然后进行动力学分析, 包括保守性证明、平衡点分析、Lyapunov 指数谱和分岔图分析, 证明了新系统具有保守系统的特点, 且能够在宽参数范围内一直保持超混沌状态, 同时对比宽参数范围内系统的相图和 Poincaré 截面图, 结果表明随着参数增大, 系统的随机性和遍历性得到增强. 接着, 对新系统进行 NIST 测试, 结果显示该系统在宽参数范围内产生的混沌随机序列具有很强的伪随机性. 最后对保守超混沌系统进行电路仿真和硬件电路实验, 实验结果证实了新系统具有良好的遍历性和可实现性.
    Conservative systems have no attractors. Therefore, compared with common dissipative systems, conservative systems have good ergodicity, strong pseudo-randomness and high security performance, thereby making them more suitable for applications in chaotic secure communication and other fields. Owing to these features, a new five-dimensional conservative hyperchaotic system with a wide parameter range is designed. Firstly, the Hamiltonian energy and Casimir energy are analyzed, showing that the new system satisfies the Hamiltonian energy conservation and can generate chaos. Next, the dynamic analysis is carried out, including conservativeness proof, equilibrium point analysis, Lyapunov exponential spectrum, and bifurcation diagrams analysis, thereby proving that the new system has the characteristics of conservative system and can always maintain a hyperchaotic state in a wide parameter range. At the same time, the phase diagram and Poincaré section diagram of the new system in a wide parameter range are compared. The results show that the randomness and ergodicity of the system are enhanced with the increase of parameters. Then, the NIST test shows that the chaotic random sequences generated by the new system in a wide parameter range have strong pseudo-randomness. Finally, the circuit simulation and hardware circuit experiment of the conservative hyperchaotic system are carried out, which proves that the new system has good ergodicity and realizability.
      通信作者: 黄丽莲, lilian_huang@163.com ; 项建弘, xiangjianhong@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61203004)、黑龙江省自然科学基金(批准号: F201220)和黑龙江省自然科学基金联合引导项目(批准号: LH2020 F022)资助的课题
      Corresponding author: Huang Li-Lian, lilian_huang@163.com ; Xiang Jian-Hong, xiangjianhong@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61203004), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F201220), and the Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2020 F022)
    [1]

    禹思敏, 吕金虎, 李澄清 2016 电子与信息学报 38 735

    Yu S M, Lü J H, Li C Q 2016 J. Elec. Info. Tech. 38 735

    [2]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [3]

    Sprott J C 1994 Phys. Rev. E 50 647Google Scholar

    [4]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465Google Scholar

    [5]

    Lü J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 659Google Scholar

    [6]

    Dang X Y, Li C B, Bao B C, Wu H G 2015 Chin. Phys. B 24 050503Google Scholar

    [7]

    鲜永菊, 扶坤荣, 徐昌彪 2021 振动与冲击 40 15

    Xian Y J, Fu K R, Xu C B 2021 J. Vib. Shock. 40 15

    [8]

    Wang G Y, Yuan F, Chen G R, Zhang Y 2018 Chaos 28 013125Google Scholar

    [9]

    Akhshani A, Akhavan A, Mobaraki A, Lim S C, Hassan Z 2014 Commun. Nonlinear Sci. Numer. Simul. 19 101Google Scholar

    [10]

    Kadhim A F, Mhaibes H I 2018 Int. J. Appl. Eng. Res. 13 2141

    [11]

    Qi G Y 2018 Nonlinear Dyn. 95 2063Google Scholar

    [12]

    Vaidyanathan S, Volos C 2015 Arch. Control Sci. 25 333Google Scholar

    [13]

    Cang S J, Wu A G, Wang Z H, Chen Z Q 2017 Nonlinear Dyn. 89 2495Google Scholar

    [14]

    Dong E Z, Yuan M F, Du S Z, Chen Z Q 2019 Appl. Math. Model. 73 40Google Scholar

    [15]

    Gu S Q, Du B X, Wan Y J 2020 Int. J. Bifurcation Chaos 30 2050242Google Scholar

    [16]

    Chen M, Wang C, Wu H G, Xu Q, Bao B C 2021 Nonlinear Dyn. 103 643Google Scholar

    [17]

    Bouteghrine B, Tanougast C, Sadoudi S 2021 J. Circuits Syst. Comput. 30 2150280Google Scholar

    [18]

    Lin Z S, Wang G Y, Wang X Y, Yu S M, Lü J H 2018 Nonlinear Dyn. 94 1003Google Scholar

    [19]

    徐昌彪, 钟德, 夏诚, 黎周 2019 振动与冲击 38 125

    Xu C B, Zhong D, Xia C, Li Z 2019 J. Vib. Shock. 38 125

    [20]

    Barboza R 2007 Int. J. Bifurcation Chaos 17 4285Google Scholar

    [21]

    贾红艳, 陈增强, 袁著祉 2009 物理学报 58 4469Google Scholar

    Jia H Y, Chen Z Q, Yuan Z Z 2009 Acta Phys. Sin. 58 4469Google Scholar

    [22]

    Liu J M, Zhang W 2013 Optik 124 5528Google Scholar

    [23]

    Xian Y J, Xia C, Guo T T, Fu K R, Xu C B 2018 Results Phys. 11 368Google Scholar

    [24]

    徐昌彪, 黎周 2019 浙江大学学报(工学版) 53 1552Google Scholar

    Xu C B, Li Z 2019 J. Zhejiang Univ. (Eng. Sci.) 53 1552Google Scholar

    [25]

    Sprott J C 2011 Int. J. Bifurcation Chaos 21 2391Google Scholar

    [26]

    Dong E Z, Jiao X D, Du S Z, Chen Z Q, Qi G Y 2020 Complexity 2020 4627597Google Scholar

    [27]

    Lakshmanan M, Rajasekar S 2003 Nonlinear Dynamics (Berlin Heidelberg: Springer-Verlag) pp191–238

    [28]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285Google Scholar

    [29]

    包伯成 2013 混沌电路导论 (北京: 科学出版社) 第45—49页

    Bao B C 2013 An Introduction to Chaotic Circuits (Beijing: Science Press) pp45−49 (in Chinese)

    [30]

    Ramasubramanian K, Sriram M S 2000 Physica D 139 72Google Scholar

    [31]

    Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dray J, Vo S 2021https://csrc.nist.gov/publications/detail/sp/800-22/rev-1 a/final [2021-06-26]

    [32]

    禹思敏 2011 混沌系统与混沌电路 (西安: 西安电子科技大学出版社) 第293—312页

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi’an: Xidian University Press) pp293−312 (in Chinese)

  • 图 1  数值仿真, 红色部分为系统${\varSigma _1}$, 蓝色部分为系统$\varSigma _1^{\rm{H}}$ (a)时域波形; (b)Casimir功率; (c)${x_1}{\rm{ \text- }}{x_4}{\rm{ \text- }}{x_5}$相图; (d)${x_1}{\rm{ \text- }}{x_4}$相图

    Fig. 1.  Numerical simulation, the red part is system${\varSigma_1}$, the blue part is system$\varSigma _1^{\rm{H}}$: (a) Time domain waveforms; (b) Casimir power; (c)${x_1}{\rm{ \text- }}{x_4}{\rm{\text-}}{x_5}$plane; (d)${x_1}{\rm{ \text- }}{x_4}$plane.

    图 2  数值仿真 (a)系统$\varSigma_1^{\rm{H}}$的Lyapunov指数谱; (b)系统$\varSigma_1^{\rm{H}}$的分岔图

    Fig. 2.  Numerical simulation: (a) Lyapunov exponent spectrum of system$\varSigma _1^{\rm{H}}$; (b) bifurcation diagram of system$\varSigma _1^{ {{\rm{H}}}}$

    图 3  系统$\varSigma _1^{\rm{H}}$的相图和Poincaré截面图 (a)$ {\varPi _2} = 2 $时的相图; (b)$ {\varPi _2} = 2 $时的Poincaré截面图; (c)$ {\varPi _2} = 500 $时的相图; (d)$ {\varPi _2} = 500 $时的Poincaré截面图; (e)$ {\varPi _2} = 1000 $时的相图; (f)$ {\varPi _2} = 1000 $时的Poincaré截面图; (g)$ {\varPi _2} = 1500 $时的相图; (h)$ {\varPi _2} = 1500 $时的Poincaré截面图

    Fig. 3.  Phase diagrams and Poincaré maps of system$\varSigma _1^{\rm{H}}$: (a) The phase diagram when$ {\varPi _2} = 2 $; (b) the Poincaré map when$ {\varPi _2} = 2 $; (c) the phase diagram when$ {\varPi _2} = 500 $; (d) the Poincaré map when$ {\varPi _2} = 500 $; (e) the phase diagram when$ {\varPi _2} = 1000 $; (f) the Poincaré map when$ {\varPi _2} = 1000 $; (g) the phase diagram when$ {\varPi _2} = 1500 $; (h) the Poincaré map when $ {\varPi _2} = 1500 $.

    图 4  系统$\varSigma_1^{\rm{H}}$$ {\varPi _2} = 2 $的相图 (a)${x_2}{\rm{ \text- }}{x_5}$平面; (b)${x_3}{\rm{ \text- }}{x_5}$平面

    Fig. 4.  Phase diagrams of system$\varSigma_1^{\rm{H}}$when$ {\varPi _2} = 2 $: (a) ${x_2}{\rm{ \text- }}{x_5}$plane; (b) ${x_3}{\rm{ \text- }}{x_5}$plane.

    图 5  系统$\varSigma_1^{\rm{H}}$非重叠模块匹配检验的P-values的直方图

    Fig. 5.  P-values histogram of non-overlapping template matching test of system$\varSigma _1^{\rm{H}}$.

    图 6  系统$\varSigma_1^{\rm{H}}$的电路设计

    Fig. 6.  Circuit design of system$\varSigma_1^{\rm{H}}$.

    图 7  系统$\varSigma _1^{\rm{H}}$的仿真电路 (a)${x_2}{\rm{ \text- }}{x_5}$相图; (b)${x_3}{\rm{ \text- }}{x_5}$相图

    Fig. 7.  Simulation circuit of system$\varSigma _1^{\rm{H}}$: (a) ${x_2}{\rm{ \text- }}{x_5}$plane; (b) ${x_3}{\rm{ \text- }}{x_5}$plane.

    图 8  系统$\varSigma _1^{\rm{H}}$的实际电路 (a)硬件实验电路; (b)实验结果

    Fig. 8.  Actual circuit of system$\varSigma _1^{\rm{H}}$: (a) Hardware experimental circuit; (b) experimental result.

    表 1  系统$\varSigma_1^{\rm{H}}$的平衡点和特征值

    Table 1.  Equilibrium points and characteristic values of system$\varSigma _1^{\rm{H}}$.

    系统平衡点($ {k_1}, {k_4} \in \mathbb{R} $)特征值($ \sigma , \omega \in {\mathbb{R}^ + } $)平衡点类型
    $\varSigma _1^{\rm{H} }$ $ (0, 0, 0, 0, 0) $ $ (0, {\rm{j}}{\omega _1}, - {\rm{j}}{\omega _1}, {\rm{j}}{\omega _2}, - {\rm{j}}{\omega _2}) $ 中心点
    $ (0, {\sigma _1}, - {\sigma _2}, {\sigma _3} + {\rm{j}}\omega , {\sigma _3} - {\rm{j}}\omega ) $ 鞍焦点
    $ ({k_1}, 0, 0, 0, 0) $ $ (0, {\sigma _1}, - {\sigma _2}, - {\sigma _3} + {\rm{j}}\omega , - {\sigma _3} - {\rm{j}}\omega ) $ 鞍焦点
    $ (0, \sigma + {\rm{j}}{\omega _1}, \sigma - {\rm{j}}{\omega _1}, - \sigma + {\rm{j}}{\omega _2}, - \sigma - {\rm{j}}{\omega _2}) $ 鞍焦点
    $ (0, {\sigma _1}, {\sigma _2}, - {\sigma _3}, - {\sigma _4}) $ 鞍焦点
    $ (\sqrt 2 , 0, \sqrt 2 {k_4}, {k_4}, 0) $ $ (0, 0, - {\sigma _1}, {\sigma _2} + {\rm{j}}\omega , {\sigma _2} - {\rm{j}}\omega ) $鞍焦点
    $ (0, \sigma + {\rm{j}}{\omega _1}, \sigma - {\rm{j}}{\omega _1}, - \sigma + {\rm{j}}{\omega _2}, - \sigma - {\rm{j}}{\omega _2}) $鞍焦点
    $ (0, {\sigma _1}, {\sigma _2}, - {\sigma _3}, - {\sigma _4}) $ 鞍焦点
    $ ( - \sqrt 2 , 0, - \sqrt 2 {k_4}, {k_4}, 0) $ $ (0, 0, {\sigma _1}, - {\sigma _2} + {\rm{j}}\omega , - {\sigma _2} - {\rm{j}}\omega ) $ 鞍焦点
    $ (0, \sigma + {\rm{j}}{\omega _1}, \sigma - {\rm{j}}{\omega _1}, - \sigma + {\rm{j}}{\omega _2}, - \sigma - {\rm{j}}{\omega _2}) $ 鞍焦点
    下载: 导出CSV

    表 2  系统$\varSigma _1^{\rm{H}}$的NIST测试结果

    Table 2.  NIST test results of System$\varSigma _1^{\rm{H}}$.

    No.Statistical testP-valueProportion
    1 Frequency 0.759756 0.99
    2 Block frequency 0.494392 1.00
    3 Cumulative sums 0.595549 1.00
    4 Runs 0.867692 0.99
    5 Longest run 0.102526 0.98
    6 Rank 0.115387 1.00
    7 FFT 0.455937 1.00
    8 Nonoverlapping template 0.015598 0.98
    9 Overlapping template 0.699313 0.99
    10 Universal 0.678686 0.98
    11 Approximate entropy 0.574903 1.00
    12 Random excursions 0.186566 0.9836
    13 Random excursions variant 0.023812 1.00
    14 Serial 0.514124 0.99
    15 Linear complexity 0.350485 0.99
    下载: 导出CSV
  • [1]

    禹思敏, 吕金虎, 李澄清 2016 电子与信息学报 38 735

    Yu S M, Lü J H, Li C Q 2016 J. Elec. Info. Tech. 38 735

    [2]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [3]

    Sprott J C 1994 Phys. Rev. E 50 647Google Scholar

    [4]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465Google Scholar

    [5]

    Lü J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 659Google Scholar

    [6]

    Dang X Y, Li C B, Bao B C, Wu H G 2015 Chin. Phys. B 24 050503Google Scholar

    [7]

    鲜永菊, 扶坤荣, 徐昌彪 2021 振动与冲击 40 15

    Xian Y J, Fu K R, Xu C B 2021 J. Vib. Shock. 40 15

    [8]

    Wang G Y, Yuan F, Chen G R, Zhang Y 2018 Chaos 28 013125Google Scholar

    [9]

    Akhshani A, Akhavan A, Mobaraki A, Lim S C, Hassan Z 2014 Commun. Nonlinear Sci. Numer. Simul. 19 101Google Scholar

    [10]

    Kadhim A F, Mhaibes H I 2018 Int. J. Appl. Eng. Res. 13 2141

    [11]

    Qi G Y 2018 Nonlinear Dyn. 95 2063Google Scholar

    [12]

    Vaidyanathan S, Volos C 2015 Arch. Control Sci. 25 333Google Scholar

    [13]

    Cang S J, Wu A G, Wang Z H, Chen Z Q 2017 Nonlinear Dyn. 89 2495Google Scholar

    [14]

    Dong E Z, Yuan M F, Du S Z, Chen Z Q 2019 Appl. Math. Model. 73 40Google Scholar

    [15]

    Gu S Q, Du B X, Wan Y J 2020 Int. J. Bifurcation Chaos 30 2050242Google Scholar

    [16]

    Chen M, Wang C, Wu H G, Xu Q, Bao B C 2021 Nonlinear Dyn. 103 643Google Scholar

    [17]

    Bouteghrine B, Tanougast C, Sadoudi S 2021 J. Circuits Syst. Comput. 30 2150280Google Scholar

    [18]

    Lin Z S, Wang G Y, Wang X Y, Yu S M, Lü J H 2018 Nonlinear Dyn. 94 1003Google Scholar

    [19]

    徐昌彪, 钟德, 夏诚, 黎周 2019 振动与冲击 38 125

    Xu C B, Zhong D, Xia C, Li Z 2019 J. Vib. Shock. 38 125

    [20]

    Barboza R 2007 Int. J. Bifurcation Chaos 17 4285Google Scholar

    [21]

    贾红艳, 陈增强, 袁著祉 2009 物理学报 58 4469Google Scholar

    Jia H Y, Chen Z Q, Yuan Z Z 2009 Acta Phys. Sin. 58 4469Google Scholar

    [22]

    Liu J M, Zhang W 2013 Optik 124 5528Google Scholar

    [23]

    Xian Y J, Xia C, Guo T T, Fu K R, Xu C B 2018 Results Phys. 11 368Google Scholar

    [24]

    徐昌彪, 黎周 2019 浙江大学学报(工学版) 53 1552Google Scholar

    Xu C B, Li Z 2019 J. Zhejiang Univ. (Eng. Sci.) 53 1552Google Scholar

    [25]

    Sprott J C 2011 Int. J. Bifurcation Chaos 21 2391Google Scholar

    [26]

    Dong E Z, Jiao X D, Du S Z, Chen Z Q, Qi G Y 2020 Complexity 2020 4627597Google Scholar

    [27]

    Lakshmanan M, Rajasekar S 2003 Nonlinear Dynamics (Berlin Heidelberg: Springer-Verlag) pp191–238

    [28]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285Google Scholar

    [29]

    包伯成 2013 混沌电路导论 (北京: 科学出版社) 第45—49页

    Bao B C 2013 An Introduction to Chaotic Circuits (Beijing: Science Press) pp45−49 (in Chinese)

    [30]

    Ramasubramanian K, Sriram M S 2000 Physica D 139 72Google Scholar

    [31]

    Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dray J, Vo S 2021https://csrc.nist.gov/publications/detail/sp/800-22/rev-1 a/final [2021-06-26]

    [32]

    禹思敏 2011 混沌系统与混沌电路 (西安: 西安电子科技大学出版社) 第293—312页

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi’an: Xidian University Press) pp293−312 (in Chinese)

  • [1] 李明华, 袁振洲, 许琰, 田钧方. 基于改进格子气模型的对向行人流分层现象的随机性研究. 物理学报, 2015, 64(1): 018903. doi: 10.7498/aps.64.018903
    [2] 谢正超, 王飞, 严建华, 岑可法. 炉膛三维温度场重建中Tikhonov正则化和截断奇异值分解算法比较. 物理学报, 2015, 64(24): 240201. doi: 10.7498/aps.64.240201
    [3] 张毅. 非保守动力学系统Noether对称性的摄动与绝热不变量. 物理学报, 2013, 62(16): 164501. doi: 10.7498/aps.62.164501
    [4] 孙克辉, 贺少波, 何毅, 尹林子. 混沌伪随机序列的谱熵复杂性分析. 物理学报, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501
    [5] 张毅, 金世欣. 含时滞的非保守系统动力学的Noether对称性. 物理学报, 2013, 62(23): 234502. doi: 10.7498/aps.62.234502
    [6] 包伯成, 杨平, 马正华, 张希. 电路参数宽范围变化时电流控制开关变换器的动力学研究. 物理学报, 2012, 61(22): 220502. doi: 10.7498/aps.61.220502
    [7] 张国基, 李璇, 刘清, 张夏衍. 基于广义信息域离散轨迹变换的随机数生成器. 物理学报, 2012, 61(6): 060502. doi: 10.7498/aps.61.060502
    [8] 关宝璐, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 郭霞, 沈光地. 具有宽调谐范围的微纳光机电系统可调谐垂直腔面发射激光器研究. 物理学报, 2011, 60(3): 034206. doi: 10.7498/aps.60.034206
    [9] 王开, 裴文江, 张毅峰, 周思源, 邵硕. 基于符号向量动力学的耦合映像格子参数估计. 物理学报, 2011, 60(7): 070502. doi: 10.7498/aps.60.070502
    [10] 张义民, 张旭方. 复合随机Duffing系统可靠性分析. 物理学报, 2008, 57(7): 3989-3995. doi: 10.7498/aps.57.3989
    [11] 王 宏, 欧阳征标, 韩艳玲, 孟庆生, 罗贤达, 刘劲松. 随机性对部分随机介质激光器阈值的影响. 物理学报, 2007, 56(5): 2616-2622. doi: 10.7498/aps.56.2616
    [12] 张 毅, 梅凤翔. 非保守力与非完整约束对Lagrange系统Noether对称性的影响. 物理学报, 2004, 53(3): 661-668. doi: 10.7498/aps.53.661
    [13] 李国辉, 徐得名, 周世平. 随机性参数自适应的混沌同步. 物理学报, 2004, 53(2): 379-382. doi: 10.7498/aps.53.379
    [14] 张 毅. 非保守力和非完整约束对Hamilton系统Lie对称性的影响. 物理学报, 2003, 52(6): 1326-1331. doi: 10.7498/aps.52.1326
    [15] 戴栋, 马西奎. 基于间歇性参数自适应控制的混沌同步. 物理学报, 2001, 50(7): 1237-1240. doi: 10.7498/aps.50.1237
    [16] 曲凯阳, 江 亿. 均质形核结冰随机性及形核率的研究. 物理学报, 2000, 49(11): 2214-2219. doi: 10.7498/aps.49.2214
    [17] 邢永忠, 徐躬耦. 经典混沌系统在相应于初始相干态的量子子空间中的随机性. 物理学报, 1999, 48(5): 769-774. doi: 10.7498/aps.48.769
    [18] 张飞舟, 王 矫, 顾 雁. 量子混沌系统本征态的统计非遍历性及其半经典极限. 物理学报, 1999, 48(12): 2169-2179. doi: 10.7498/aps.48.2169
    [19] 徐云, 张建峡, 杜世培. 动力学系统中非线性项的跳跃随机性. 物理学报, 1991, 40(1): 33-38. doi: 10.7498/aps.40.33
    [20] 傅盘铭, 叶佩弦. 激光场的随机性对简并四波混频的影响. 物理学报, 1985, 34(6): 737-744. doi: 10.7498/aps.34.737
计量
  • 文章访问数:  5134
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 修回日期:  2021-06-28
  • 上网日期:  2021-08-17
  • 刊出日期:  2021-12-05

/

返回文章
返回