搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光外差探测的大气N2O吸收光谱测量与廓线反演

薛正跃 李竣 刘笑海 王晶晶 高晓明 谈图

引用本文:
Citation:

基于激光外差探测的大气N2O吸收光谱测量与廓线反演

薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图

Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection

Xue Zheng-Yue, Li Jun, Liu Xiao-Hai, Wang Jing-Jing, Gao Xiao-Ming, Tan Tu
PDF
HTML
导出引用
  • 激光外差光谱探测由于其光谱分辨率高、体积小、重量轻等优点近年来得到了快速的发展, 可用于大气温室气体垂直廓线测量和碳卫星地面定标等. 本文报道了利用3.939 µm带间级联激光器作为本振光源的测量大气N2O的激光外差系统, 自制高精度太阳跟踪仪收集太阳光作为激光外差的信号光源, 其跟踪精度达到7 arcsec, 激光外差系统的光谱分辨率达到0.004 cm–1, 测量了合肥地区(31.902°N, 117.167°E)大气N2O吸收光谱, 得到2838.336和2539.344 cm–1两个强吸收峰, 并对吸收信号进行波长标定, 得到了N2O分子的整层大气透过率谱, 信噪比为93. 将高分辨率光谱数据进行归一化处理和频率校正, 利用参考正向模型和最优估计算法得到N2O大气整层浓度廓线, 标准偏差体积分数为0.000031 × 10–6—0.0026 × 10–6, 对应相对误差范围为0.009%—0.83%. 研究结果表明, 所搭建的激光外差系统能够实现对大气中N2O的吸收光谱测量以及对N2O的廓线反演, 为长期观测大气N2O浓度提供保证.
    aser heterodyne spectroscopy detection has rapidly developed in recent years due to its high spectral resolution, small size, and light weight. It can be used to measure the atmospheric greenhouse gas vertical profile and calibrate the carbon satellite ground. This paper reports a laser heterodyne system for measuring atmospheric N2O, with a 3.939-µm interband cascade laser used as a local oscillator light source. A homemade high-precision solar tracker collects sunlight as a laser heterodyne signal source. The tracking accuracy reaches 7 arcsec, and the spectral resolution of the laser heterodyne system arrives at 0.004 cm–1. The atmospheric N2O absorption spectrum in Hefei area (31.902°N, 117.167°E) is measured, and two strong absorption peaks respectively at 288.336 and 2539.344 cm–1 are obtained. In addition, the wavelength calibration of the absorption signal, and the entire atmospheric transmittance spectrum of N2O molecules are obtained, and the signal-to-noise ratio is 93. The high-resolution spectrum data are normalized and frequency is corrected, and the N2O atmospheric concentration profile is obtained by using the reference forward model and the optimal estimation algorithm. The standard deviation of volume fraction is in a range of 0.000031—0.0026 ppm, and the corresponding relative error range is 0.009%—0.83%. The research results show that the laser heterodyne system built in this work can be used to measure the absorption spectrum of N2O in the atmosphere and realize the inversion of the N2O profile, which provides a guarantee for long-term observation of atmospheric N2O concentration.
      通信作者: 谈图, tantu@aiofm.ac.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 41730103)、国家自然科学基金青年基金(批准号: 41805018)和国家重点研发计划(批准号: 2017YFC0209705)资助的课题.
      Corresponding author: Tan Tu, tantu@aiofm.ac.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 41730103), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41805018), and the National Key Research and Development Program of China (Grant No. 2017YFC0209705).
    [1]

    向亮, 高庆先, 周锁铨, 陈永立 2009 气候变化研究进展 5 278

    Xiang L, Gao Q X, Zhou S Q, Chen Y L 2009 Adv. Clim. Change Res. 5 278

    [2]

    邵君宜, 林兆祥, 刘林美, 龚威 2017 物理学报 66 104206Google Scholar

    Shao J Y, Lin Z X, Liu L M, Gong W 2017 Acta Phys. Sin. 66 104206Google Scholar

    [3]

    王薇, 刘文清, 张天舒 2014 光学学报 34 0130003Google Scholar

    Wang W, Liu W Q, Zhang T S 2014 Acta Opt. Sin. 34 0130003Google Scholar

    [4]

    Zhao Y J, Wexler A S, Hase F, Pan Y, Mitloehner F M 2016 J. Environ. Prot. Ecol. 7 1719Google Scholar

    [5]

    Clarke G B, Wilson E L, Miller J H, et al. 2014 Meas. Sci. Technol. 25 055204Google Scholar

    [6]

    Palmer P I, Wilson E L, Villanueva G L, et al. 2019 Atmos. Meas. Tech. 12 2579Google Scholar

    [7]

    Weidmann D, Tsai T R, Macleod N A, et al. 2011 Opt. Lett. 36 1951Google Scholar

    [8]

    Tsai T R, Rose R A, Weidmann D, et al. 2012 Appl. Opt. 51 8779Google Scholar

    [9]

    Wilson E L, McLinden M L, Miller J H, et al. 2013 Appl. Phys. B 114 385Google Scholar

    [10]

    Wilson E L, DiGregorio A J, Villanueva G, et al. 2019 Appl. Phys. B 125 211Google Scholar

    [11]

    Rodin A, Klimchuk A, Nadezhdinskiy A, et al. 2014 Opt. Express 22 13825Google Scholar

    [12]

    谈图, 曹振松, 王贵师, 等 2015 光谱学与光谱分析 35 1516Google Scholar

    Tan T, Cao Z S, Wang G S, et al. 2015 Spectrosc. Spectral Anal. 35 1516Google Scholar

    [13]

    Wang J, Wang G, Tan T, et al. 2019 Opt. Express 27 9610Google Scholar

    [14]

    Parvitte B, Zéninari V, Thiébeaux C, et al. 2004 Spectrochim. Acta, Part A 60 1193Google Scholar

    [15]

    Gisi M, Hase F, Blumenstock T 2011 Atmos. Meas. Tech. 4 47Google Scholar

    [16]

    Siegman A E 1966 Appl. Opt. 5 1588Google Scholar

    [17]

    张尚露, 黄印博, 卢兴吉, 曹振松, 戴聪明, 刘强, 高晓明, 饶瑞中, 王英俭 2019 光谱学与光谱分析 39 1317Google Scholar

    Zhang S L, Huang Y B, Lu X j, Cao Z S, Dai C M, Liu Q, Gao X M, Zhong R R, Wang Y J 2019 Spectrosc. Spectral Anal. 39 1317Google Scholar

    [18]

    Rodgers C D 2000 Inverse Methods for Atmospheric Sounding: Theory and Practise (1st Ed.) (Singapore: World Scientific Publishing)

    [19]

    Rodgers C D 1990 J. Geophys. Res. 95 5587Google Scholar

    [20]

    Weidmann D, Reburn W J, Smith K M 2007 Appl. opt. 46 7162Google Scholar

  • 图 1  激光外差原理图

    Fig. 1.  Schematic diagram of laser heterodyne.

    图 2  (a)太阳跟踪仪内部装置; (b)精跟踪模式下太阳光斑质心偏移量

    Fig. 2.  (a) Internal device of suntracker; (b) sunlight spot centroid offset in precision tracking mode.

    图 3  系统结构原理图(LIA, 锁相放大器; PC, 电脑; DAQ, 数据采集卡; FL1, 2, 聚焦透镜1, 2; BS1, 2, 分束器1, 2)

    Fig. 3.  System structure schematic diagram. LIA, lock-in amplifier; PC, personal computer; DAQ, data acquisition card; FL1, 2, focus lens 1, 2; BS1, 2, beam splitter 1, 2.

    图 4  系统结构实物图

    Fig. 4.  Physical picture of system structure.

    图 5  (a) 射频信号功率谱; (b) 仪器函数

    Fig. 5.  (a) RF signal power spectrum; (b) instrument functions.

    图 6  外差装置的信噪比测量

    Fig. 6.  SNR measurement of heterodyne device.

    图 7  (a) N2O吸收的外差信号; (b) 激光器波数与注入电流的关系

    Fig. 7.  (a) Heterodyne signal absorbed by N2O; (b) the relationship between laser wavenumber and injection current.

    图 8  实验所得N2O吸收光谱与模拟吸收光谱的对比

    Fig. 8.  Comparison of the N2O absorption spectrum obtained in the experiment and the simulation absorption spectrum.

    图 9  数据反演流程图

    Fig. 9.  Data inversion flow chart.

    图 10  LHR数据反演结果 (a) 实验和拟合LHR谱图; (b) 残差

    Fig. 10.  Inversion results of LHR data: (a) Experimental and fitted LHR spectrogram; (b) residual.

    图 11  温度和压力廓线

    Fig. 11.  Temperature and pressure profiles.

    图 12  N2O的先验和反演的垂直浓度分布图(VMR表示体积混合比)

    Fig. 12.  Prior and inversion vertical concentration profiles of N2O. VMR, volume mixing ratio.

    表 1  3.9 µm激光外差系统的参数设置

    Table 1.  Parameter setting of 3.9 µm laser heterodyne system.

    参数数值
    太阳光传输效率0.305
    滤波带宽/MHz60
    太阳温度/K5773
    测量波长/m3.939
    积分时间/s0.3
    下载: 导出CSV
  • [1]

    向亮, 高庆先, 周锁铨, 陈永立 2009 气候变化研究进展 5 278

    Xiang L, Gao Q X, Zhou S Q, Chen Y L 2009 Adv. Clim. Change Res. 5 278

    [2]

    邵君宜, 林兆祥, 刘林美, 龚威 2017 物理学报 66 104206Google Scholar

    Shao J Y, Lin Z X, Liu L M, Gong W 2017 Acta Phys. Sin. 66 104206Google Scholar

    [3]

    王薇, 刘文清, 张天舒 2014 光学学报 34 0130003Google Scholar

    Wang W, Liu W Q, Zhang T S 2014 Acta Opt. Sin. 34 0130003Google Scholar

    [4]

    Zhao Y J, Wexler A S, Hase F, Pan Y, Mitloehner F M 2016 J. Environ. Prot. Ecol. 7 1719Google Scholar

    [5]

    Clarke G B, Wilson E L, Miller J H, et al. 2014 Meas. Sci. Technol. 25 055204Google Scholar

    [6]

    Palmer P I, Wilson E L, Villanueva G L, et al. 2019 Atmos. Meas. Tech. 12 2579Google Scholar

    [7]

    Weidmann D, Tsai T R, Macleod N A, et al. 2011 Opt. Lett. 36 1951Google Scholar

    [8]

    Tsai T R, Rose R A, Weidmann D, et al. 2012 Appl. Opt. 51 8779Google Scholar

    [9]

    Wilson E L, McLinden M L, Miller J H, et al. 2013 Appl. Phys. B 114 385Google Scholar

    [10]

    Wilson E L, DiGregorio A J, Villanueva G, et al. 2019 Appl. Phys. B 125 211Google Scholar

    [11]

    Rodin A, Klimchuk A, Nadezhdinskiy A, et al. 2014 Opt. Express 22 13825Google Scholar

    [12]

    谈图, 曹振松, 王贵师, 等 2015 光谱学与光谱分析 35 1516Google Scholar

    Tan T, Cao Z S, Wang G S, et al. 2015 Spectrosc. Spectral Anal. 35 1516Google Scholar

    [13]

    Wang J, Wang G, Tan T, et al. 2019 Opt. Express 27 9610Google Scholar

    [14]

    Parvitte B, Zéninari V, Thiébeaux C, et al. 2004 Spectrochim. Acta, Part A 60 1193Google Scholar

    [15]

    Gisi M, Hase F, Blumenstock T 2011 Atmos. Meas. Tech. 4 47Google Scholar

    [16]

    Siegman A E 1966 Appl. Opt. 5 1588Google Scholar

    [17]

    张尚露, 黄印博, 卢兴吉, 曹振松, 戴聪明, 刘强, 高晓明, 饶瑞中, 王英俭 2019 光谱学与光谱分析 39 1317Google Scholar

    Zhang S L, Huang Y B, Lu X j, Cao Z S, Dai C M, Liu Q, Gao X M, Zhong R R, Wang Y J 2019 Spectrosc. Spectral Anal. 39 1317Google Scholar

    [18]

    Rodgers C D 2000 Inverse Methods for Atmospheric Sounding: Theory and Practise (1st Ed.) (Singapore: World Scientific Publishing)

    [19]

    Rodgers C D 1990 J. Geophys. Res. 95 5587Google Scholar

    [20]

    Weidmann D, Reburn W J, Smith K M 2007 Appl. opt. 46 7162Google Scholar

  • [1] 刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮. 含自旋-轨道耦合的O-2光谱常数计算. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241435
    [2] 胡运优, 徐亮, 沈先春, 束胜全, 徐睆垚, 邓亚颂, 徐寒扬, 刘建国, 刘文清. 基于大气廓线合成背景的目标气云透过率反演. 物理学报, 2023, 72(3): 033201. doi: 10.7498/aps.72.20221670
    [3] 李月, 李竣, 薛正跃, 王晶晶, 王贵师, 高晓明, 谈图. 本振光功率锁定方法应用于激光外差辐射计的研究. 物理学报, 2023, 72(9): 093201. doi: 10.7498/aps.72.20230261
    [4] 李竣, 薛正跃, 刘笑海, 王晶晶, 王贵师, 刘锟, 高晓明, 谈图. 激光外差光谱仪模拟风场探测. 物理学报, 2022, 71(7): 074204. doi: 10.7498/aps.71.20211252
    [5] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明. 基于高分辨率激光外差光谱反演大气CO2柱浓度及系统测量误差评估方法. 物理学报, 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [6] 卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中. 激光外差光谱仪的仪器线型函数研究. 物理学报, 2019, 68(6): 064208. doi: 10.7498/aps.68.20181620
    [7] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定. 物理学报, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [8] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体. 物理学报, 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [9] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [10] 晏春回, 王挺峰, 张合勇, 吕韬, 吴世松. 近距离激光外差探测光学极限位移分辨率. 物理学报, 2017, 66(23): 234208. doi: 10.7498/aps.66.234208
    [11] 李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲. 激光光源线宽对外差探测性能的影响. 物理学报, 2016, 65(8): 084206. doi: 10.7498/aps.65.084206
    [12] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [13] 凌六一, 谢品华, 林攀攀, 黄友锐, 秦敏, 段俊, 胡仁志, 吴丰成. 基于O2-O2吸收的非相干宽带腔增强吸收光谱浓度反演方法研究. 物理学报, 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [14] 刘扬阳, 吕群波, 曾晓茹, 黄旻, 相里斌. 静态计算光谱成像仪图谱反演的关键数据处理技术. 物理学报, 2013, 62(6): 060203. doi: 10.7498/aps.62.060203
    [15] 赵跃智, 廖桂华, 陈文娟, 曹钦存. TeO2-Nb2O5-BaCl2 玻璃的结构及光学性能研究. 物理学报, 2012, 61(23): 237802. doi: 10.7498/aps.61.237802
    [16] 张治国. 紫外波段高透过率铜铟掺杂SnO2薄膜的研究. 物理学报, 2010, 59(11): 8172-8177. doi: 10.7498/aps.59.8172
    [17] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算. 物理学报, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [18] 李彦超, 章亮, 杨彦玲, 高龙, 徐博, 王春晖. 多光束激光外差高精度测量玻璃厚度的方法. 物理学报, 2009, 58(8): 5473-5478. doi: 10.7498/aps.58.5473
    [19] 宋晓书, 程新路, 杨向东, 令狐荣锋. 氧化亚氮3000—0200和1001—0110跃迁带在高温下的线强度. 物理学报, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
    [20] 曹 琳, 王春梅, 陈扬骎, 杨晓华. 光外差腔衰荡光谱理论研究. 物理学报, 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
计量
  • 文章访问数:  6459
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 修回日期:  2021-07-06
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回