搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光辐照二硫化钨的超快动态响应及时域整形调制

王凯 孙靖雅 潘昌基 王飞飞 张可 陈治成

引用本文:
Citation:

飞秒激光辐照二硫化钨的超快动态响应及时域整形调制

王凯, 孙靖雅, 潘昌基, 王飞飞, 张可, 陈治成

Ultrafast dynamic response and temporal shaping modulation of tungsten disulfide irradiated by femtosecond laser

Wang Kai, Sun Jing-Ya, Pan Chang-Ji, Wang Fei-Fei, Zhang Ke, Chen Zhi-Cheng
PDF
HTML
导出引用
  • 飞秒激光加工作为一种高效可控的调制手段, 其辐照所引起的材料电离可以对激光脉冲在材料内部的能量传递和沉积产生重要影响, 进而调控材料的表面形貌和化学组分. 因此, 本文重点研究了飞秒激光辐照二硫化钨的烧蚀特性并利用等离子体模型对辐照过程中材料的超快响应以及能量的传递、吸收进行计算分析. 研究发现, 烧蚀坑的深度和直径均展现出先快速增长再趋于稳定的变化规律, 并且理论计算与实验结果符合. 揭示了飞秒激光烧蚀二硫化钨的机制, 辐照初期材料内部会产生大量自由电子并形成致密等离子体区域, 导致材料表面反射和内部吸收的显著增加. 两个增强效应共同影响激光能量的注入和沉积, 使得大量入射能量沉积在近表面浅层区域, 并且激光通量增加时烧蚀坑的扩张出现饱和趋势. 此外, 利用时域整形双脉冲序列烧蚀二硫化钨, 通过调节脉冲延迟在保持烧蚀深度不变的情况下, 在双脉冲延时为0.7 ps时得到最优化的最小烧蚀坑直径. 研究结果有助于激光调制二氧化钨在光催化方面的应用研究.
    Femtosecond laser treatment has been widely used for modulating different kinds of materials as a convenient and efficient approach. In the process of laser modulation, the ionization caused by femtosecond laser irradiation may significantly affect the propagation and energy deposition of laser pulse inside the material, and thus finally influencing the surface morphology and optimizing the material properties. In this work, the ablation of WS2 is conducted in a wide range of laser fluence by single pulse. With the increase of injected energy, the expansion of craters goes through a process from rapid growth to stabilization both in the direction of diameter and in the depth direction. And a plasma model is proposed to track the dynamic response of the excited material and the transfer and deposition of the laser energy in the irradiation of WS2. The calculated results reveal that a great number of free electrons will generate after the incidence of laser pulse and leads the dense plasma zone to form. In this zone, the reflection on the surface and the absorption inside of WS2 are both enhanced due to the rapid increase of free electron density, which affects the injection and deposition of laser energy, thus resulting in the deposition of most energy in the shallow area below the surface. With the increasing of the laser fluence, the majority of laser energy is deposited on the surface of WS2, which leads the ablation crater to reach the saturation state. Meanwhile, a double-pulse train generated by temporal shaping is utilized to modulate the diameter of craters. By adjusting the pulse delay, the smallest diameter of the crater can be obtained at 0.7 ps. The results pave the way for potential applications of the effective method in controlling the material removal and improving the catalytic performance of pristine WS2.
      通信作者: 孙靖雅, sjy@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11704028, 51975054)资助的课题
      Corresponding author: Sun Jing-Ya, sjy@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704028, 51975054)
    [1]

    Afzal A M, Iqbal M Z, Dastgeer G, Nazir G, Mumtaz S, Usman M, Eom J 2020 ACS Appl. Mater. Interfaces 12 39524Google Scholar

    [2]

    Sang Y, Zhao Z, Zhao M, Hao P, Leng Y, Liu H 2015 Adv. Mater. 27 363Google Scholar

    [3]

    Liu Y, Huang W, Chen W, Wang X, Guo J, Tian H, Zhang H, Wang Y, Yu B, Ren T-L 2019 Appl. Surf. Sci. 481 1127Google Scholar

    [4]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [5]

    Rahman M S, Hasan M R, Rikta K A, Anower M 2018 Opt. Mater. 75 567Google Scholar

    [6]

    Zhang C, Wang S, Yang L, Liu Y, Xu T, Ning Z, Zak A, Zhang Z, Tenne R, Chen Q 2012 Appl. Phys. Lett. 100 243101Google Scholar

    [7]

    Ma S, Zeng L, Tao L, Tang C Y, Yuan H, Long H, Cheng P K, Chai Y, Chen C, Fung K H 2017 Sci. Rep. 7 1Google Scholar

    [8]

    Venkatakrishnan A, Chua H, Tan P, Hu Z, Liu H, Liu Y, Carvalho A, Lu J, Sow C H 2017 ACS Nano 11 713Google Scholar

    [9]

    Phillips K C, Gandhi H H, Mazur E, Sundaram S 2015 Adv. Opt. Photonics 7 684Google Scholar

    [10]

    Jiang L, Wang A, Li B, Cui T, Lu Y 2018 Light Sci. Appl. 7 17134Google Scholar

    [11]

    Xu C, Jiang L, Li X, Li C, Shao C, Zuo P, Liang M, Qu L, Cui T 2020 Nano Energy 67 104260Google Scholar

    [12]

    Zuo P, Jiang L, Li X, Tian M, Xu C, Yuan Y, Ran P, Li B, Lu Y 2019 ACS Appl. Mater. Interfaces 11 39334Google Scholar

    [13]

    Lu J, Lu J H, Liu H, Liu B, Chan K X, Lin J, Chen W, Loh K P, Sow C H 2014 Acs Nano 8 6334Google Scholar

    [14]

    Alrasheed A, Gorham J M, Tran Khac B C, Alsaffar F, DelRio F W, Chung K H, Amer M R 2018 ACS Appl. Mater. Interfaces 10 18104Google Scholar

    [15]

    Sundaram S, Mazur E 2002 Nature Mater. 1 217Google Scholar

    [16]

    Vaidyanathan A, Mitra S, Narducci L, Shatas R 1977 Solid State Commun. 21 405Google Scholar

    [17]

    Petrakakis E, Tsibidis G, Stratakis E 2019 Phys. Rev. B 99 195201Google Scholar

    [18]

    Jiang L, Tsai H L 2005 Int. J. Heat Mass Transf. 48 487Google Scholar

    [19]

    Fox M 2009固体的光学性质(注释版) (北京: 科学出版社) 第155−156页

    Fox M 2009 Optical Properties of Solids (Beijing: Science Press) pp155−156 (in Chinese)

    [20]

    Zhao X, Shin Y C 2014 Appl. Phys. Lett. 105 111907Google Scholar

    [21]

    Höhm S, Rosenfeld A, Krüger J, Bonse J 2013 Appl. Surf. Sci. 278 7Google Scholar

    [22]

    Hernandez-Rueda J, Götte N, Siegel J, Soccio M, Zielinski B, Sarpe C, Wollenhaupt M, Ezquerra T A, Baumert T, Solis J 2015 ACS Appl. Mater. Interfaces 7 6613Google Scholar

    [23]

    Zhao M, Hu J, Jiang L, Zhang K, Liu P, Lu Y 2015 Sci. Rep. 5 1Google Scholar

  • 图 1  不同激光通量辐照二硫化钨的烧蚀坑形貌 (a1)−(f1)为共聚焦激光强度图; (a2)−(f2)为共聚焦三维形貌

    Fig. 1.  Morphologies of ablation crater of tungsten disulfide (WS2) irradiated at different laser fluence: (a1)−(f1) Intensity images and (a2)−(f2) 3D morphologies captured by confocal microscope.

    图 2  烧蚀深度及直径对激光通量的依赖关系

    Fig. 2.  Ablation depth and diameter as the function of laser fluence.

    图 3  激光辐照后二硫化钨材料内部自由电子在时间和空间的分布情况 (a) 0.54 J/cm2; (b) 1.56 J/cm2; (c) 3.90 J/cm2

    Fig. 3.  Distribution of free electron inside WS2 after irradiation: (a) 0.54 J/cm2; (b) 1.56 J/cm2; (c) 3.90 J/cm2.

    图 4  激光辐照后二硫化钨表面反射率的动态变化(F = 0.54 J/cm2) (a) 随时间的变化; (b) 随自由电子密度的变化

    Fig. 4.  Evolution of surface reflectivity of irradiated WS2 (F = 0.54 J/cm2): (a) Evolution with time; (b) evolution with the increase of free electron density.

    图 5  激光辐照后二硫化钨表面中心位置吸收系数和自由电子密度随激光注入时间的变化(F = 0.54 J/cm2)

    Fig. 5.  Evolution of absorption coefficient and the free electron density in the central region of irradiated WS2 (F = 0.54 J/cm2).

    图 6  辐照后二硫化钨内部激光强度分布(F = 0.54 J/cm2) (a) 辐照中心区域激光强度; (b)−(d) 分别为1, 30, 140 fs时二硫化钨内部的激光强度分布

    Fig. 6.  Distribution of laser intensity inside the irradiated WS2 (F = 0.54 J/cm2): (a) laser intensity of the central irradiated region as the function of time; (b)−(d) distribution of laser intensity inside WS2 at 1, 30, and 140 fs, respectively.

    图 7  烧蚀深度计算值与实验测量值的对比

    Fig. 7.  Comparison of ablation depth between the calculated and experimental measurements.

    图 8  双脉冲序列调制二硫化钨表面形貌 (a) 烧蚀坑直径; (b)烧蚀深度, 激光总通量为0.92 J/cm2, 子脉冲能量比1∶1

    Fig. 8.  Modulated surface morphology of WS2 by double-pulse train: (a) Crater diameter; (b) ablation depth, the total fluence is 0.92 J/cm2 and the sub-pulse energy ratio is 1∶1.

    图 9  双脉冲序列调制二硫化钨烧蚀坑直径对于脉冲延迟的依赖特性

    Fig. 9.  Dependence of pulse delay on crater diameter in the modulation of WS2 by double-pulse train.

    表 1  模型中用到相关参数

    Table 1.  Parameters used in the model.

    参数符号取值
    禁带宽度/eVEg1.35
    正折射率n4.0
    消光系数k0
    价带电子数/cm-3Nev1.44 × 1023
    光斑半径/μmr03.5
    激光通量/(J·cm-1)F0.5—4.0
    激光脉宽/fstp140
    激光波长/nmλ800
    下载: 导出CSV
  • [1]

    Afzal A M, Iqbal M Z, Dastgeer G, Nazir G, Mumtaz S, Usman M, Eom J 2020 ACS Appl. Mater. Interfaces 12 39524Google Scholar

    [2]

    Sang Y, Zhao Z, Zhao M, Hao P, Leng Y, Liu H 2015 Adv. Mater. 27 363Google Scholar

    [3]

    Liu Y, Huang W, Chen W, Wang X, Guo J, Tian H, Zhang H, Wang Y, Yu B, Ren T-L 2019 Appl. Surf. Sci. 481 1127Google Scholar

    [4]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [5]

    Rahman M S, Hasan M R, Rikta K A, Anower M 2018 Opt. Mater. 75 567Google Scholar

    [6]

    Zhang C, Wang S, Yang L, Liu Y, Xu T, Ning Z, Zak A, Zhang Z, Tenne R, Chen Q 2012 Appl. Phys. Lett. 100 243101Google Scholar

    [7]

    Ma S, Zeng L, Tao L, Tang C Y, Yuan H, Long H, Cheng P K, Chai Y, Chen C, Fung K H 2017 Sci. Rep. 7 1Google Scholar

    [8]

    Venkatakrishnan A, Chua H, Tan P, Hu Z, Liu H, Liu Y, Carvalho A, Lu J, Sow C H 2017 ACS Nano 11 713Google Scholar

    [9]

    Phillips K C, Gandhi H H, Mazur E, Sundaram S 2015 Adv. Opt. Photonics 7 684Google Scholar

    [10]

    Jiang L, Wang A, Li B, Cui T, Lu Y 2018 Light Sci. Appl. 7 17134Google Scholar

    [11]

    Xu C, Jiang L, Li X, Li C, Shao C, Zuo P, Liang M, Qu L, Cui T 2020 Nano Energy 67 104260Google Scholar

    [12]

    Zuo P, Jiang L, Li X, Tian M, Xu C, Yuan Y, Ran P, Li B, Lu Y 2019 ACS Appl. Mater. Interfaces 11 39334Google Scholar

    [13]

    Lu J, Lu J H, Liu H, Liu B, Chan K X, Lin J, Chen W, Loh K P, Sow C H 2014 Acs Nano 8 6334Google Scholar

    [14]

    Alrasheed A, Gorham J M, Tran Khac B C, Alsaffar F, DelRio F W, Chung K H, Amer M R 2018 ACS Appl. Mater. Interfaces 10 18104Google Scholar

    [15]

    Sundaram S, Mazur E 2002 Nature Mater. 1 217Google Scholar

    [16]

    Vaidyanathan A, Mitra S, Narducci L, Shatas R 1977 Solid State Commun. 21 405Google Scholar

    [17]

    Petrakakis E, Tsibidis G, Stratakis E 2019 Phys. Rev. B 99 195201Google Scholar

    [18]

    Jiang L, Tsai H L 2005 Int. J. Heat Mass Transf. 48 487Google Scholar

    [19]

    Fox M 2009固体的光学性质(注释版) (北京: 科学出版社) 第155−156页

    Fox M 2009 Optical Properties of Solids (Beijing: Science Press) pp155−156 (in Chinese)

    [20]

    Zhao X, Shin Y C 2014 Appl. Phys. Lett. 105 111907Google Scholar

    [21]

    Höhm S, Rosenfeld A, Krüger J, Bonse J 2013 Appl. Surf. Sci. 278 7Google Scholar

    [22]

    Hernandez-Rueda J, Götte N, Siegel J, Soccio M, Zielinski B, Sarpe C, Wollenhaupt M, Ezquerra T A, Baumert T, Solis J 2015 ACS Appl. Mater. Interfaces 7 6613Google Scholar

    [23]

    Zhao M, Hu J, Jiang L, Zhang K, Liu P, Lu Y 2015 Sci. Rep. 5 1Google Scholar

  • [1] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用的研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231733
    [2] 张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, GennadyEfimovich Remnev, 乐小云. 烧蚀对强脉冲离子束在高分子材料中能量沉积的影响. 物理学报, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [3] 张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云. 强脉冲离子束辐照金属材料烧蚀产物特性分析. 物理学报, 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [4] 陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响. 物理学报, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [5] 冯培培, 吴寒, 张楠. 超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究. 物理学报, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [6] 石桓通, 邹晓兵, 赵屾, 朱鑫磊, 王新新. 并联金属丝提高电爆炸丝沉积能量的数值模拟. 物理学报, 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [7] 盛亮, 李阳, 吴坚, 袁媛, 赵吉祯, 张美, 彭博栋, 黑东炜. 双绞铝丝纳秒电爆炸实验研究. 物理学报, 2014, 63(20): 205203. doi: 10.7498/aps.63.205203
    [8] 沈忠伟, 王兆华, 范海涛, 秦爽, 滕浩, 何鹏, 魏志义. 输出能量4mJ的1kHz飞秒掺钛蓝宝石激光再生放大研究. 物理学报, 2014, 63(10): 104211. doi: 10.7498/aps.63.104211
    [9] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究. 物理学报, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [10] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [11] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强. 物理学报, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [12] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [13] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [14] 胡德志. 脉冲激光烧蚀中电声弛豫时间的确定. 物理学报, 2009, 58(2): 1077-1082. doi: 10.7498/aps.58.1077
    [15] 王锐, 杨建军, 梁春永, 王洪水, 韩伟, 杨阳. 飞秒激光在空气和水中对硅片烧蚀加工的实验研究. 物理学报, 2009, 58(8): 5429-5435. doi: 10.7498/aps.58.5429
    [16] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [17] 余本海, 戴能利, 王 英, 李玉华, 季玲玲, 郑启光, 陆培祥. 飞秒激光烧蚀LiNbO3晶体的形貌特征与机理研究. 物理学报, 2007, 56(10): 5821-5826. doi: 10.7498/aps.56.5821
    [18] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [19] 谷渝秋, 蔡达锋, 郑志坚, 杨向东, 周维民, 焦春晔, 陈 豪, 温天舒, 淳于书泰. 飞秒激光-固体靶相互作用中超热电子能量分布的实验研究. 物理学报, 2005, 54(1): 186-191. doi: 10.7498/aps.54.186
    [20] 李晓溪, 贾天卿, 冯东海, 徐至展. 超短脉冲激光照射下氧化铝的烧蚀机理. 物理学报, 2004, 53(7): 2154-2158. doi: 10.7498/aps.53.2154
计量
  • 文章访问数:  3244
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-18
  • 修回日期:  2021-05-21
  • 上网日期:  2021-10-07
  • 刊出日期:  2021-10-20

/

返回文章
返回