搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶效应下对称三量子点系统中光孤子稳定性研究

任波 佘彦超 徐小凤 叶伏秋

引用本文:
Citation:

高阶效应下对称三量子点系统中光孤子稳定性研究

任波, 佘彦超, 徐小凤, 叶伏秋

Stability of optical soliton in symmetrical three-quantum-dot system under high-order effects

Ren Bo, She Yan-Chao, Xu Xiao-Feng, Ye Fu-Qiu
PDF
HTML
导出引用
  • 利用多重尺度法解析地研究了窄脉冲探测光激发下半导体三量子点分子系统中高阶效应对光孤子稳定性的影响. 结果表明, 由标准非线性薛定谔方程所描述的光孤子在传播的过程中会出现较大衰减, 而由高阶非线性薛定谔方程所描述的光孤子却有着较为良好的稳定性. 此外, 数值模拟光孤子间的相互作用发现, 由标准非线性薛定谔方程所描述的两光孤子碰撞后其振幅迅速衰减并辐射出较为严重色散波, 而由高阶非线性薛定谔方程所描述的两光孤子碰撞后其形状几乎不发生任何变化. 这主要是由于当入射的探测光脉冲足够窄时, 系统须采用高阶方程来描述, 其物理原因是方程中的高阶效应, 包括非瞬时效应和三阶色散效应不能被忽略或当作微扰处理. 这种稳定的光孤子对于将来的光信息处理和传输技术有着潜在的应用价值.
    The influence of high-order effects on the stability of the optical soliton in a semiconductor three-quantum-dot molecular system under the excitation of narrow pulse probe light is analyzed analytically by using the multi-scale method. The results show that optical soliton described by the standard nonlinear Schrödinger equation will have a large attenuation in the propagation process, while the optical soliton described by the high-order nonlinear Schrödinger equation has relatively good stability. In addition, numerical simulations of the interaction between optical solitons show that the amplitudes of the two optical solitons described by the standard nonlinear Schrödinger equation attenuate rapidly after the collisions and radiation of more serious dispersion waves, while the shapes of the two optical solitons described by the high-order nonlinear Schrödinger equation hardly changes after the collision. This is mainly because when the incident probe light pulse is narrow enough, the system must be described by a higher-order equation. The physical reason is that the higher-order effects in the equation, including non-instantaneous effects and third-order dispersion effects, cannot be ignored or treated as perturbations. This kind of stable optical soliton has potential application value for future optical information processing and transmission technology.
      通信作者: 佘彦超, ycshe@xtu.edu.cn ; 叶伏秋, phyfq@jsu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12064038, 12165008)、贵州省科研项目 (批准号: KY[2019]179, KY[2017]315, ZK[2021]034)、贵州省优秀青年科技人才项目(批准号: [2019]5673)和铜仁市科技局科技基金(批准号: [2020]77)资助的课题.
      Corresponding author: She Yan-Chao, ycshe@xtu.edu.cn ; Ye Fu-Qiu, phyfq@jsu.edu.cn
    • Funds: Project supported by the the National Nature Science Foundation of China (Grant Nos. 12064038, 12165008), the NSF of Guizhou Province Education Department, China (Grant Nos. KY[2019]179, KY[2017]315, ZK[2021]034), the Outstanding Young Science and Technology Talents of Guizhou Pronice, China (Grant No. [2019]5673), and the NSF of Tongren Science and Technology Bureau, China (Grant No. [2020]77).
    [1]

    Chen S M, Tang M C, Wu J, Jiang Q, Dorogan V G, Benamara M, Mazur Y I, Salamo G J, Seeds A J, Liu H 2014 Elecctron. Lett. 50 1467Google Scholar

    [2]

    Sun D, Zhang H J, Sun, H, Li X W, Wang G Y 2018 Phys. Lett. A 10 036

    [3]

    Wang Y, Ding J W, Wang D L 2020 Eur. Phys. J. D 74 190Google Scholar

    [4]

    Peng Y D, Yang A H, Li D H, Zhang H G, Niu Y P, Gong S Q 2014 Laser Phys. Lett. 11 065201Google Scholar

    [5]

    Zeng K H, Wang D L, She Y C, Luo X Q 2013 Eur. Phys. J. D 67 221Google Scholar

    [6]

    Li B, Qi Y H, Niu Y P, Gong S Q 2017 J. Nonlinear Optic. Phys. Mat. 26 1750054Google Scholar

    [7]

    Chen Y, Bai Z Y, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [8]

    Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar

    [9]

    Si L G, Yang W X, Lu X Y, Hao X Y, Yang X X 2010 Phys. Rev. A 82 013836Google Scholar

    [10]

    Tian S C, Wan R G, Tong C Z, Ning Y Q, Qin L, Liu Y 2014 J. Opt. Soc. Am. B 31 1436

    [11]

    唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202Google Scholar

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar

    [12]

    杨璇, 王胤, 王登龙, 丁建文 2020 物理学报 69 174203Google Scholar

    Yang X, Wang Y, Wang D L, Ding J W 2020 Acta. Phys. Sin. 69 174203Google Scholar

    [13]

    Yang W X, Chen A, Lee R, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar

    [14]

    Mahmoudi M, Sahrai M 2009 Phys. E 41 1772Google Scholar

    [15]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392Google Scholar

    [16]

    Hao X Y, Liu J B, Lu X Y, Song P J, Si L G 2009 Commun. Theor. Phys. 51 519Google Scholar

    [17]

    Zhu C J, Huang G X 2011 Opt. Express 19 1963Google Scholar

    [18]

    Fewo S I, Ngabireng C M, Kofane T C 2008 Phys Soc. Japan 77 074401Google Scholar

    [19]

    Zhang S, Yi L 2008 Phys. Rev. E 78 026602Google Scholar

    [20]

    Boardman A D, King N, Mitchell-Thomas R C, Malnev V N, Rapoport Y G 2008 Metamaterials 2 145Google Scholar

    [21]

    Boardman A D, Mitchell-Thomas R C, King N J, Rapoport Y G 2010 Opt. Commun. 283 1585Google Scholar

    [22]

    Boardman A D, Hess O, Mitchell-Thomas R C, Rapoport Y G, Velasco L 2010 Photon. Nanostruct. 8 228Google Scholar

    [23]

    Zhu C J, Huang G X 2009 Phys. Rev. B 80 235408Google Scholar

    [24]

    Hang C, Huang G X, Deng L 2006 Phys. Rev. E 73 036607Google Scholar

    [25]

    Mani Bhupeshwaran, Jawahar A, Radha S, Chitra K, Sivasubramanian A 2016 Photon. Netw. Commun. 32 73Google Scholar

    [26]

    Liu L, Tian B, Chai J, Chai H P 2017 Laser Phys. 27 075402Google Scholar

    [27]

    Borges H S, Sanz L, Villas-Bôas J M, Diniz Neto O O, Alcalde A M 2012 Phys. Rev. B 85 115425Google Scholar

    [28]

    Berney J, Portella-Oberli M T, Deveaud B 2008 Phys. Rev. B 77 121301Google Scholar

    [29]

    Bracker A S, Scheibner M, Doty M F, Stinaff E A, Ponomarev I V, Kim J C, Whitman L J, Reinecke T L, Gammon D 2006 Appl. Phys. Lett. 89 233110Google Scholar

    [30]

    Hsieh C Y, Shim Y P, Korkusinski M, Hawrylak P 2012 Rep. Prog. Phys. 75 114501Google Scholar

    [31]

    Luo X Q, Li Z Z, Jing J, Xiong W, Li T F, Yu T 2018 Sci. Rep. 8 3107Google Scholar

    [32]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [33]

    Wang W, Bu L, Cheng D, Ye Y, Chen S, Baronio F 2021 OSA Continuum 4 1488Google Scholar

    [34]

    Li L, Huang G X 2010 Eur. Phys. J. D 58 339Google Scholar

    [35]

    Liu J Y, Hang C, Huang G X 2016 Phys. Rev. A 93 063836Google Scholar

    [36]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803Google Scholar

    [37]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D 1996 Science 273 5271

    [38]

    B N, Fei J Y, Li D F, Zhong X, Wang D, Wang H H, Bao Q Q 2020 Chin. Phys. B 29 034204Google Scholar

  • 图 1  (a) TQD有效激子能级示意图; (b)相应能级结构图. ${{\varGamma} }_{m1}(m=2, 3, 4)$表示退相干通道, $ {\omega _{4 n}}(n = 1, 2, 3) $表示能级差, ${\varDelta _{\text{p}}} = {\omega _{\text{p}}} - {\omega _{{\text{41}}}}$为探测场与能级差$ {\omega _{{\text{41}}}} $的频率失谐量.

    Fig. 1.  (a) Energy level diagram of TQD effective exciton; (b) corresponding energy level structure diagram.${\varGamma }_{m1} $$ (m=2, 3, 4)$represents the decoherent channel, ${\omega _{4 n}}\left(\right.n = $$ 1, 2, 3\left.\right)$represents the energy level difference, ${\varDelta _{\text{p}}} = {\omega _{\text{p}}} - $$ {\omega _{{\text{41}}}}$is the frequency detuning between the probe laser field and the energy level difference.

    图 2  方程(10)相关系数虚部与实部的比值随${{{\varDelta _{\text{p}}}}/{{\varGamma _4}}}$的变化关系 (a)$ {{{K_{{\text{2 i}}}}} \mathord{\left/ {\vphantom {{{K_{{\text{2 i}}}}} {{K_{2{\text{r}}}}}}} \right. } {{K_{2{\text{r}}}}}} $; (b)$ {{{K_{{\text{3 i}}}}} \mathord{\left/ {\vphantom {{{K_{{\text{3 i}}}}} {{K_{{\text{3 r}}}}}}} \right. } {{K_{{\text{3 r}}}}}} $; (c)$ {{{W_{\text{i}}}} \mathord{\left/ {\vphantom {{{W_{\text{i}}}} {{W_{\text{r}}}}}} \right. } {{W_{\text{r}}}}} $; (d)$ {{{\beta _{{\text{1 i}}}}} \mathord{\left/ {\vphantom {{{\beta _{{\text{1 i}}}}} {{\beta _{{\text{1 r}}}}}}} \right. } {{\beta _{{\text{1 r}}}}}} $; (e)$ {{{\beta _{{\text{2 i}}}}} \mathord{\left/ {\vphantom {{{\beta _{{\text{2 i}}}}} {{\beta _{{\text{2 r}}}}}}} \right. } {{\beta _{{\text{2 r}}}}}} $

    Fig. 2.  The ratio of the imaginary part and the real part of the correlation coefficient of equation (10) as a function of ${{{\varDelta _{\text{p}}}} \mathord{\left/ {\vphantom {{{\Delta _{\text{p}}}} {{\Gamma _4}}}} \right. } {{\varGamma _4}}}$: (a)$ {{{K_{{\text{2 i}}}}} \mathord{\left/ {\vphantom {{{K_{{\text{2 i}}}}} {{K_{2{\text{r}}}}}}} \right. } {{K_{2{\text{r}}}}}} $; (b)$ {{{K_{{\text{3 i}}}}} \mathord{\left/ {\vphantom {{{K_{{\text{3 i}}}}} {{K_{{\text{3 r}}}}}}} \right. } {{K_{{\text{3 r}}}}}} $; (c)$ {{{W_{\text{i}}}} \mathord{\left/ {\vphantom {{{W_{\text{i}}}} {{W_{\text{r}}}}}} \right. } {{W_{\text{r}}}}} $; (d)$ {{{\beta _{{\text{1 i}}}}} \mathord{\left/ {\vphantom {{{\beta _{{\text{1 i}}}}} {{\beta _{{\text{1 r}}}}}}} \right. } {{\beta _{{\text{1 r}}}}}} $; (e)$ {{{\beta _{{\text{2 i}}}}} \mathord{\left/ {\vphantom {{{\beta _{{\text{2 i}}}}} {{\beta _{{\text{2 r}}}}}}} \right. } {{\beta _{{\text{2 r}}}}}} $.

    图 3  (a)方程(14)作为初始条件的数值演化结果; (b)方程(15)作为初始条件的数值演化结果. 波形给出的演化距离为1个单位长度(虚线)和2个单位长度(点虚线), 取$ {\tau _0} = 5 \times {10^{ - 13}}\;{\text{s}} $, $ \beta = 0.5 $, $\varPhi = {\text{0}}$, 其他参数与图2相同

    Fig. 3.  (a) Numerical evolution result using equation (14) as the initial condition; (b) numerical evolution result using equation (15) as the initial condition. The evolution distance given by the soliton waveform is 1 unit length (dotted line) and 2 unit lengths (dotted dotted line), and the parameters used are $ {\tau _0} = 5 \times {10^{ - 13}}\;{\text{s}} $, $ \beta = 0.5 $, $\varPhi = {\text{0}}$, other parameters used are the same as Fig. 2

    图 4  相邻孤子间的相互作用 (a)方程(16a)作为初始条件的数值演化结果; (b)方程(16b)作为初始条件的数值演化结果. 除$ {\theta _1} = {\theta _2} = 0 $外, 其他参数与图2相同

    Fig. 4.  Interaction between adjacent optical solitons: (a) Numerical evolution result using equation (16a) as the initial condition; (b) numerical evolution result using equation (16b) as the initial condition. Except for $ {\theta _1} = {\theta _2} = 0 $, the other parameters are the same as in Fig. 2

  • [1]

    Chen S M, Tang M C, Wu J, Jiang Q, Dorogan V G, Benamara M, Mazur Y I, Salamo G J, Seeds A J, Liu H 2014 Elecctron. Lett. 50 1467Google Scholar

    [2]

    Sun D, Zhang H J, Sun, H, Li X W, Wang G Y 2018 Phys. Lett. A 10 036

    [3]

    Wang Y, Ding J W, Wang D L 2020 Eur. Phys. J. D 74 190Google Scholar

    [4]

    Peng Y D, Yang A H, Li D H, Zhang H G, Niu Y P, Gong S Q 2014 Laser Phys. Lett. 11 065201Google Scholar

    [5]

    Zeng K H, Wang D L, She Y C, Luo X Q 2013 Eur. Phys. J. D 67 221Google Scholar

    [6]

    Li B, Qi Y H, Niu Y P, Gong S Q 2017 J. Nonlinear Optic. Phys. Mat. 26 1750054Google Scholar

    [7]

    Chen Y, Bai Z Y, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [8]

    Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar

    [9]

    Si L G, Yang W X, Lu X Y, Hao X Y, Yang X X 2010 Phys. Rev. A 82 013836Google Scholar

    [10]

    Tian S C, Wan R G, Tong C Z, Ning Y Q, Qin L, Liu Y 2014 J. Opt. Soc. Am. B 31 1436

    [11]

    唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202Google Scholar

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar

    [12]

    杨璇, 王胤, 王登龙, 丁建文 2020 物理学报 69 174203Google Scholar

    Yang X, Wang Y, Wang D L, Ding J W 2020 Acta. Phys. Sin. 69 174203Google Scholar

    [13]

    Yang W X, Chen A, Lee R, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar

    [14]

    Mahmoudi M, Sahrai M 2009 Phys. E 41 1772Google Scholar

    [15]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392Google Scholar

    [16]

    Hao X Y, Liu J B, Lu X Y, Song P J, Si L G 2009 Commun. Theor. Phys. 51 519Google Scholar

    [17]

    Zhu C J, Huang G X 2011 Opt. Express 19 1963Google Scholar

    [18]

    Fewo S I, Ngabireng C M, Kofane T C 2008 Phys Soc. Japan 77 074401Google Scholar

    [19]

    Zhang S, Yi L 2008 Phys. Rev. E 78 026602Google Scholar

    [20]

    Boardman A D, King N, Mitchell-Thomas R C, Malnev V N, Rapoport Y G 2008 Metamaterials 2 145Google Scholar

    [21]

    Boardman A D, Mitchell-Thomas R C, King N J, Rapoport Y G 2010 Opt. Commun. 283 1585Google Scholar

    [22]

    Boardman A D, Hess O, Mitchell-Thomas R C, Rapoport Y G, Velasco L 2010 Photon. Nanostruct. 8 228Google Scholar

    [23]

    Zhu C J, Huang G X 2009 Phys. Rev. B 80 235408Google Scholar

    [24]

    Hang C, Huang G X, Deng L 2006 Phys. Rev. E 73 036607Google Scholar

    [25]

    Mani Bhupeshwaran, Jawahar A, Radha S, Chitra K, Sivasubramanian A 2016 Photon. Netw. Commun. 32 73Google Scholar

    [26]

    Liu L, Tian B, Chai J, Chai H P 2017 Laser Phys. 27 075402Google Scholar

    [27]

    Borges H S, Sanz L, Villas-Bôas J M, Diniz Neto O O, Alcalde A M 2012 Phys. Rev. B 85 115425Google Scholar

    [28]

    Berney J, Portella-Oberli M T, Deveaud B 2008 Phys. Rev. B 77 121301Google Scholar

    [29]

    Bracker A S, Scheibner M, Doty M F, Stinaff E A, Ponomarev I V, Kim J C, Whitman L J, Reinecke T L, Gammon D 2006 Appl. Phys. Lett. 89 233110Google Scholar

    [30]

    Hsieh C Y, Shim Y P, Korkusinski M, Hawrylak P 2012 Rep. Prog. Phys. 75 114501Google Scholar

    [31]

    Luo X Q, Li Z Z, Jing J, Xiong W, Li T F, Yu T 2018 Sci. Rep. 8 3107Google Scholar

    [32]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [33]

    Wang W, Bu L, Cheng D, Ye Y, Chen S, Baronio F 2021 OSA Continuum 4 1488Google Scholar

    [34]

    Li L, Huang G X 2010 Eur. Phys. J. D 58 339Google Scholar

    [35]

    Liu J Y, Hang C, Huang G X 2016 Phys. Rev. A 93 063836Google Scholar

    [36]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803Google Scholar

    [37]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D 1996 Science 273 5271

    [38]

    B N, Fei J Y, Li D F, Zhong X, Wang D, Wang H H, Bao Q Q 2020 Chin. Phys. B 29 034204Google Scholar

  • [1] 王胤, 王壬颍, 陈桥, 邓永和. 点间隧穿耦合对四能级三量子点电磁感应透明介质孤子动力学的影响. 物理学报, 2024, 73(4): 044202. doi: 10.7498/aps.73.20231194
    [2] 曾莹, 佘彦超, 张蔚曦, 杨红. 纳米光纤-半导体量子点分子耦合系统中光孤子的存储与读取. 物理学报, 2024, 73(16): 164202. doi: 10.7498/aps.73.20240184
    [3] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用. 物理学报, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [4] 杨佳奇, 刘文军. 基于变系数3+1维三次-五次复金兹堡-朗道方程的亮孤子及混合孤子传输特性. 物理学报, 2023, 72(10): 100504. doi: 10.7498/aps.72.20222430
    [5] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [6] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [7] 杨璇, 王胤, 王登龙, 丁建文. 点间隧穿调控五能级M型三量子点电磁感应透明介质中的孤子碰撞性质. 物理学报, 2020, 69(17): 174203. doi: 10.7498/aps.69.20200141
    [8] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [9] 于宇, 贾维国, 闫青, 门克内木乐, 张俊萍. 拉曼散射与自陡峭效应对皮秒孤子传输特性的影响. 物理学报, 2015, 64(5): 054207. doi: 10.7498/aps.64.054207
    [10] 李建设, 李曙光, 赵原源, 韩颖, 陈海良, 韩晓明, 周桂耀. 在远离光子晶体光纤零色散波长的正常色散区入射飞秒脉冲产生四波混频及孤子效应的实验研究. 物理学报, 2014, 63(16): 164206. doi: 10.7498/aps.63.164206
    [11] 陈爱喜, 陈渊, 邓黎, 邝耘丰. 非对称半导体量子阱中自发辐射相干诱导透明. 物理学报, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [12] 刘凌宇, 田慧平, 纪越峰. 光子晶体波导中的孤子传输及其延迟特性研究. 物理学报, 2011, 60(10): 104216. doi: 10.7498/aps.60.104216
    [13] 赵宝平, 杨振军, 陆大全, 胡巍. 强非局域非线性介质中的互诱导分数傅里叶变换. 物理学报, 2011, 60(8): 084214. doi: 10.7498/aps.60.084214
    [14] 丁万山, 席 崚, 柳莲花. 基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究. 物理学报, 2008, 57(12): 7705-7711. doi: 10.7498/aps.57.7705
    [15] 卓 辉, 傅喜泉, 吴锦花, 文双春. 非线性光学格子中的光束演化研究. 物理学报, 2007, 56(1): 252-257. doi: 10.7498/aps.56.252
    [16] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [17] 吴锦花, 傅喜泉, 文双春. 一维光学格子孤子的传输特性及控制研究. 物理学报, 2006, 55(4): 1840-1845. doi: 10.7498/aps.55.1840
    [18] 令维军, 郑加安, 贾玉磊, 魏志义. 低阈值飞秒钛宝石激光器的理论研究. 物理学报, 2005, 54(4): 1619-1623. doi: 10.7498/aps.54.1619
    [19] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子. 物理学报, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [20] 刘山亮. 空间光孤子脉冲在平面光波导中的传输. 物理学报, 2003, 52(11): 2825-2830. doi: 10.7498/aps.52.2825
计量
  • 文章访问数:  3970
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-06-19
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回