搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ScxY1–x Fe2合金固溶和V2x Fe2(1–x)Zr有序-无序转变的理论预测

蒋永林 何长春 杨小宝

引用本文:
Citation:

ScxY1–x Fe2合金固溶和V2x Fe2(1–x)Zr有序-无序转变的理论预测

蒋永林, 何长春, 杨小宝

Theoretical prediction of solution in ScxY1–x Fe2 and order-disorder transitions in V2x Fe2(1–x)Zr

Jiang Yong-Lin, He Chang-Chun, Yang Xiao-Bao
PDF
HTML
导出引用
  • 合金化是增加材料结构和性能多样性的重要手段. 本文先从考虑最近邻相互作用的Ising模型出发, 通过铁磁耦合研究二元合金的低温相分离、高温固溶体系, 通过反铁磁耦合研究低温有序固溶、高温无序体系. 以储氢合金中的Laves相V2x Fe2(1–x)Zr和ScxY1–x Fe2材料为例, 采用基于结构识别的高通量第一原理计算, 考虑结构简并度对配分函数的贡献, 可以对合金材料进行有限温度下的理论预测. 先通过第一原理计算得到基态 (零温下) 形成能, 形成能大于零的体系ScxY1–x Fe2在低温下相分离, 根据自由能符号确定合金固溶的临界温度; 形成能小于零的体系V2x Fe2(1–x)Zr在低温下倾向于形成有序相, 根据比热的计算可以确定体系出现有序-无序转变的临界温度. 其中, 高通量第一原理计算和对应的结构简并度统计可以通过我们课题组发布的程序SAGAR (structures of alloy generation and recognition)实现.
    Alloying is an important way to increase the diversity of material structure and properties. In this paper, we start from Ising model considering nearest neighbor interaction, in which a ferromagnetic system corresponds to a low temperature phase separation and high temperature solid solution of binary alloy, while antiferromagnetic system corresponds to a low temperature ordered solid solution and a high temperature disorder. The high-throughput first-principles calculation based on the structure recognition is realized by the program SAGAR (structures of alloy generation and recognition) developed by our research group. By considering the contribution of structural degeneracy to the partition function, theoretical prediction of alloy materials can be carried out at finite temperature. Taking hydrogen storage alloy (ScxY1–x Fe2 and V2x Fe2(1–x)Zr) for example, the formation energy of ground state (at zero temperature) can be obtained by the first-principles calculations. It is found that the formation energy of ScxY1–x Fe2 is greater than zero, thereby inducing the phase separation at low temperature. The free energy will decrease with the temperature and concentration increasing, where the critical temperature of solid solution of alloy is determined according to the zero point of free energy. The formation energies of V2x Fe2(1–x)Zr are all lower than zero, and the ordered phase occurs at low temperature. The order-disorder transition temperature of V0.5Fe1.5Zr and V1.5Fe0.5Zr are both about 100 K, while the transition temperature of VFeZr is nearly 50 K. The calculation process will effectively improve the high throughput screening efficiency of alloy, and also provide relevant theoretical reference for experimental research.
      通信作者: 杨小宝, scxbyang@scut.edu.cn
    • 基金项目: 广东省重点研究发展项目(批准号: 2020B010183001)和广东省计算科学与材料设计重点实验室(批准号: 2019B030301001)资助的课题
      Corresponding author: Yang Xiao-Bao, scxbyang@scut.edu.cn
    • Funds: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B010183001) and the Guangdong Provincial Key Laboratory for Computational Science and Materials Design Program, China (Grant No. 2019B030301001)
    [1]

    Le T, Epa V C, Burden F R, Winkler D A 2012 Chem. Rev. 5 112Google Scholar

    [2]

    Oganov A R, Pickard C J, Zhu Q, Needs R J 2019 Nat. Rev. Mater. 5 4Google Scholar

    [3]

    Woodley S M, Catlow R 2008 Nat. Mater. 12 7Google Scholar

    [4]

    Wang Y, Lv J, Zhu L, Ma Y 2010 Phys. Rev. B 82 094116Google Scholar

    [5]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 4 184Google Scholar

    [6]

    Pickard C J, Needs R J 2011 J. Phys. Condens. Matter 5 23Google Scholar

    [7]

    黄文军, 乔君威, 陈顺华, 王雪姣, 吴玉程 2021 物理学报 70 106201Google Scholar

    Huang W J, Qiao J W, Chen S H, Wang X J, Wu Y C 2021 Acta Phys. Sin. 70 106201Google Scholar

    [8]

    Li Z M, Wang H, Ouyang L Z, Liu J W, Zhu M 2016 J. Alloys Compd. 689 154865Google Scholar

    [9]

    王鹏程, 曹亦, 谢红光, 殷归, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维 2020 物理学报 69 117501Google Scholar

    Wang P C, Cao Y, Xie H G, Yin Y, Wang W, Wang Z Y, Ma X C, Wang L, Huang W 2020 Acta Phys. Sin. 69 117501Google Scholar

    [10]

    王大能, Olsen A, 叶恒强 1985 物理学报 34 681Google Scholar

    Wang D N, Olsen A, Ye H Q 1985 Acta Phys. Sin. 34 681Google Scholar

    [11]

    van de Walle A 2008 Nat. Mater. 7 455Google Scholar

    [12]

    Hart G L W, Blum V, Walorski M J, Zunger A 2005 Nat. Mater. 4 391Google Scholar

    [13]

    Yuge K 2009 Phys. Rev. B 79 144109Google Scholar

    [14]

    Zunger A, Wei S H, Ferreira L G, Bernard J E 1990 Phys. Rev. Lett. 65 353Google Scholar

    [15]

    Xia Z G, Liu G K, Wen J G, Mei Z G, Balasubramanian M, Molokeev M S, Peng L C, Gu L, Miller D J, Liu Q L, Poeppelmeier K R 2016 J. Am. Chem. Soc. 138 1158Google Scholar

    [16]

    Banerjee S, Kumar A, Pillai C G S 2014 Intermetallics 51 30Google Scholar

    [17]

    Budzyński M, Sarzyński J, Wiertel M, Surowiec Z 2001 Acta Phys. Pol. A 100 717Google Scholar

    [18]

    Li X X, Yang C, Lu H Z, Luo X, Li Y Y, Ivasishin O M 2019 J. Alloys Compd. 787 112Google Scholar

    [19]

    Luo S L, Li T S, Wang X J, Faizan M, Zhang L J 2021 Comput. Mol. Sci. 11 7690Google Scholar

    [20]

    何长春, 廖继海, 杨小宝 2017 物理学报 66 163601Google Scholar

    He C C, Liao J H, Yang X B 2017 Acta Phys. Sin. 66 163601Google Scholar

    [21]

    Xu S G, Li X T, Zhao Y J, Liao J H, Xu W P, Yang X B, Xu H 2017 J. Am. Chem. Soc. 134 48Google Scholar

    [22]

    Cheng Y H, Liao J H, Zhao Y J, Ni J, Yang X B 2019 Carbon 154 140Google Scholar

    [23]

    Hart G L W, Forcade R W 2008 Phys. Rev. B 77 224115Google Scholar

    [24]

    Cheng Y H, Liao J H, Zhao Y J, Yang X B 2017 Sci. Rep. 7 16211Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891Google Scholar

    [29]

    Yuan S R, Ouyyang L Z, Zhu M, Zhao Y J 2018 J. Magn. Magn. Mater. 460 61Google Scholar

    [30]

    汪志诚 2013 热力学·统计物理 (北京: 高等教育出版社) 第256页

    Wang Z C 2013 Thermodynamics·Statistical Physics (5th Ed.) (Beijing: Higher Education Press) p256 (in Chinese)

    [31]

    Sivardière J, Lajzerowicz J 1975 Phys. Rev. A 11 2090Google Scholar

    [32]

    Jiang Y L, Chen Y Z, Wang H, Yang X B 2020 Phys. Lett. A 284 126658Google Scholar

  • 图 1  取代含量为半数时的一种构型下, V2x Fe2(1–x)Zr的(a)原胞结构和体积扩大为原胞(b) 2倍、(c) 4倍时对应的晶格; ScxY1–x Fe2合金体系的(d)原胞结构和(e)—(f)体积扩大为原胞4倍时对应的7种晶格(红色、绿色、黄色、青色和紫色小球分别代表 V, Zr, Fe, Y和Sc原子)

    Fig. 1.  Lattices of V2x Fe2(1–x)Zr (a) primitive cell and corresponding to volumes expanded respectively from primitive cell by (b) 2 times, (c) 4 times under a half of replacement content. (d) Primitive cell structure of ScxY1–x Fe2 alloys system and (e)−(f) the 7 kinds of lattices with 4 times volume of that of primitive one (red, green, yellow cyan and purple sphere represent respectively V, Zr, Fe, Y and Sc atom).

    图 2  根据Ising模型拟合结果得出的体系 (a)自由能符号; (c)热容; (b), (d)相转变温度

    Fig. 2.  Systems obtained according to the fitting results of Ising model: (a) Free energy signal; (c) heat capacity; (b), (d) phase transition temperature.

    图 3  (a) ScxY1–x Fe2 体系立方晶格中不同取代浓度下随温度变化的自由能符号; (b) 1/8和(c) 5/8取代浓度下不同晶格结构随温度变化的自由能; (d) ScxY1–x Fe2体系温度-浓度相图

    Fig. 3.  (a) Free energy signal induced by temperature under different replacement concentration in ScxY1–x Fe2 cubic structure. Free energy versus temperature for different crystal structures at (b) 1/8 and (c) 5/8 replacement concentration, respectively. (d) Temperature-concentration phase diagram of ScxY1–x Fe2 alloy system

    图 4  (a) V2x Fe2(1–x)Zr体系的温度-浓度相图(图中浓度指代为$ x $); (b) V0.5Fe1.5Zr, (c) VFeZr和(d) V1.5Fe0.5Zr组分及邻近组分合金结构的热容

    Fig. 4.  (a) Phase diagram of temperature versus concentration in V2x Fe2(1–x)Zr system (concentration in Fig. 4 is devoted to x). Heat capacities of (b) V0.5Fe1.5Zr, (c) VFeZr and (d) V1.5Fe0.5Zr components and their adjacent components

    表 1  利用SAGAR对图1所示两种合金在不同晶格下生成的所有不等价结构数目

    Table 1.  Numbers of all nonequivalent structures from different lattices created by using SAGAR for the two kinds of alloy system shown as Fig. 1

    晶型 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
    结构数 5 28 531 3 43 34 43 21 34 30 16
    下载: 导出CSV
  • [1]

    Le T, Epa V C, Burden F R, Winkler D A 2012 Chem. Rev. 5 112Google Scholar

    [2]

    Oganov A R, Pickard C J, Zhu Q, Needs R J 2019 Nat. Rev. Mater. 5 4Google Scholar

    [3]

    Woodley S M, Catlow R 2008 Nat. Mater. 12 7Google Scholar

    [4]

    Wang Y, Lv J, Zhu L, Ma Y 2010 Phys. Rev. B 82 094116Google Scholar

    [5]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 4 184Google Scholar

    [6]

    Pickard C J, Needs R J 2011 J. Phys. Condens. Matter 5 23Google Scholar

    [7]

    黄文军, 乔君威, 陈顺华, 王雪姣, 吴玉程 2021 物理学报 70 106201Google Scholar

    Huang W J, Qiao J W, Chen S H, Wang X J, Wu Y C 2021 Acta Phys. Sin. 70 106201Google Scholar

    [8]

    Li Z M, Wang H, Ouyang L Z, Liu J W, Zhu M 2016 J. Alloys Compd. 689 154865Google Scholar

    [9]

    王鹏程, 曹亦, 谢红光, 殷归, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维 2020 物理学报 69 117501Google Scholar

    Wang P C, Cao Y, Xie H G, Yin Y, Wang W, Wang Z Y, Ma X C, Wang L, Huang W 2020 Acta Phys. Sin. 69 117501Google Scholar

    [10]

    王大能, Olsen A, 叶恒强 1985 物理学报 34 681Google Scholar

    Wang D N, Olsen A, Ye H Q 1985 Acta Phys. Sin. 34 681Google Scholar

    [11]

    van de Walle A 2008 Nat. Mater. 7 455Google Scholar

    [12]

    Hart G L W, Blum V, Walorski M J, Zunger A 2005 Nat. Mater. 4 391Google Scholar

    [13]

    Yuge K 2009 Phys. Rev. B 79 144109Google Scholar

    [14]

    Zunger A, Wei S H, Ferreira L G, Bernard J E 1990 Phys. Rev. Lett. 65 353Google Scholar

    [15]

    Xia Z G, Liu G K, Wen J G, Mei Z G, Balasubramanian M, Molokeev M S, Peng L C, Gu L, Miller D J, Liu Q L, Poeppelmeier K R 2016 J. Am. Chem. Soc. 138 1158Google Scholar

    [16]

    Banerjee S, Kumar A, Pillai C G S 2014 Intermetallics 51 30Google Scholar

    [17]

    Budzyński M, Sarzyński J, Wiertel M, Surowiec Z 2001 Acta Phys. Pol. A 100 717Google Scholar

    [18]

    Li X X, Yang C, Lu H Z, Luo X, Li Y Y, Ivasishin O M 2019 J. Alloys Compd. 787 112Google Scholar

    [19]

    Luo S L, Li T S, Wang X J, Faizan M, Zhang L J 2021 Comput. Mol. Sci. 11 7690Google Scholar

    [20]

    何长春, 廖继海, 杨小宝 2017 物理学报 66 163601Google Scholar

    He C C, Liao J H, Yang X B 2017 Acta Phys. Sin. 66 163601Google Scholar

    [21]

    Xu S G, Li X T, Zhao Y J, Liao J H, Xu W P, Yang X B, Xu H 2017 J. Am. Chem. Soc. 134 48Google Scholar

    [22]

    Cheng Y H, Liao J H, Zhao Y J, Ni J, Yang X B 2019 Carbon 154 140Google Scholar

    [23]

    Hart G L W, Forcade R W 2008 Phys. Rev. B 77 224115Google Scholar

    [24]

    Cheng Y H, Liao J H, Zhao Y J, Yang X B 2017 Sci. Rep. 7 16211Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891Google Scholar

    [29]

    Yuan S R, Ouyyang L Z, Zhu M, Zhao Y J 2018 J. Magn. Magn. Mater. 460 61Google Scholar

    [30]

    汪志诚 2013 热力学·统计物理 (北京: 高等教育出版社) 第256页

    Wang Z C 2013 Thermodynamics·Statistical Physics (5th Ed.) (Beijing: Higher Education Press) p256 (in Chinese)

    [31]

    Sivardière J, Lajzerowicz J 1975 Phys. Rev. A 11 2090Google Scholar

    [32]

    Jiang Y L, Chen Y Z, Wang H, Yang X B 2020 Phys. Lett. A 284 126658Google Scholar

  • [1] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [2] 白刚, 林翠, 刘端生, 许杰, 李卫, 高存法. 取向相关的Pb(Zr0.52Ti0.48)O3外延薄膜的相图和介电性能. 物理学报, 2021, 70(12): 127701. doi: 10.7498/aps.70.20202164
    [3] 郑治秀, 张林. Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算. 物理学报, 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [4] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究. 物理学报, 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [5] 郭灿, 王志军, 王锦程, 郭耀麟, 唐赛. 直接相关函数对双模晶体相场模型相图的影响. 物理学报, 2013, 62(10): 108104. doi: 10.7498/aps.62.108104
    [6] 高英俊, 罗志荣, 黄创高, 卢强华, 林葵. 晶体相场方法研究二维六角相向正方相结构转变. 物理学报, 2013, 62(5): 050507. doi: 10.7498/aps.62.050507
    [7] 王婵娟, 陈阿海, 高先龙. 受限一维无自旋费米子系统的性质研究. 物理学报, 2012, 61(12): 127501. doi: 10.7498/aps.61.127501
    [8] 孙春峰. 镶嵌正方晶格上Gauss模型的相图. 物理学报, 2012, 61(8): 086802. doi: 10.7498/aps.61.086802
    [9] 李英华, 常敬臻, 李雪梅, 俞宇颖, 戴程达, 张林. 铋的固相及液相多相状态方程研究. 物理学报, 2012, 61(20): 206203. doi: 10.7498/aps.61.206203
    [10] 沈壮志, 林书玉. 声场中气泡运动的混沌特性. 物理学报, 2011, 60(10): 104302. doi: 10.7498/aps.60.104302
    [11] 邹维科, 孔祥木, 王春阳, 高中扬. 三维钻石型等级晶格上量子Heisenberg系统的临界性质. 物理学报, 2010, 59(7): 4874-4879. doi: 10.7498/aps.59.4874
    [12] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备. 物理学报, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [13] 白克钊, 邝华, 刘慕仁, 孔令江. 开放边界条件下平面环行交叉路口交通流的相图研究. 物理学报, 2010, 59(9): 5990-5995. doi: 10.7498/aps.59.5990
    [14] 李启朗, 孙晓燕, 汪秉宏, 刘慕仁. 低速十字路口交通流模型相图. 物理学报, 2010, 59(9): 5996-6002. doi: 10.7498/aps.59.5996
    [15] 许 玲, 晏世雷. 横向随机晶场Ising模型的相图和磁化行为研究. 物理学报, 2007, 56(3): 1691-1696. doi: 10.7498/aps.56.1691
    [16] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响. 物理学报, 2006, 55(8): 4020-4025. doi: 10.7498/aps.55.4020
    [17] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图. 物理学报, 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [18] 吴 凡, 王太宏. 通过单电子泵实现对单电子运动的控制及其相图分析. 物理学报, 2003, 52(3): 696-702. doi: 10.7498/aps.52.696
    [19] 施一生. Fe1-xPdx合金电子结构和磁性的理论研究. 物理学报, 2003, 52(4): 993-998. doi: 10.7498/aps.52.993
    [20] 王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民. Sm-Co-Ti三元系相关系及某些单相化合物的结构与磁性. 物理学报, 2001, 50(4): 752-757. doi: 10.7498/aps.50.752
计量
  • 文章访问数:  5519
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 修回日期:  2021-07-01
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回