搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型浮地记忆元件建模方法及实现

郑辞晏 庄楚源 李亚 练明坚 梁燕 于东升

引用本文:
Citation:

一种新型浮地记忆元件建模方法及实现

郑辞晏, 庄楚源, 李亚, 练明坚, 梁燕, 于东升

A novel modeling method and implementation of floating memory elements

Zheng Ci-Yan, Zhuang Chu-Yuan, Li Ya, Lian Ming-Jian, Liang Yan, Yu Dong-Sheng
PDF
HTML
导出引用
  • 忆阻器、忆容器和忆感器是具有记忆特性的非线性元件, 隶属于记忆元件系统. 目前, 由于现有可购忆阻器芯片尚存在许多不足, 且忆容器和忆感器的硬件实物研究仍处于实验室验证阶段, 因此, 研究者们获取此类记忆元件硬件仍有难度. 为了解决这个问题, 建立有效的记忆元件等效电路模型, 以促进对记忆元件及其系统的特性和应用研究. 本文根据忆阻器、忆容器和忆感器的本构关系, 提出一种新型浮地记忆元件建模方法, 即采用搭建通用模拟器的方式, 在保证电路拓扑结构不变的情况下, 通过改变接入通用模拟器的无源电路元件分别实现浮地忆阻器、忆容器和忆感器模型. 相比于其他能实现3种浮地记忆元件模型的研究, 本文所搭建的记忆元件模型结构简单, 工作频率更高, 易于电路实现. 结合理论分析、PSPICE仿真及硬件电路实验结果的一致性, 验证基于该通用模拟器搭建记忆元件模型的可行性和有效性.
    Memristors, memcapacitors and meminductors are nonlinear circuit components with memory effects and belong to memory element (mem-element) system. Since there are many shortcomings in the existing available commercial memristor chips, and the physical realizations of memcapacitor and meminductor hardware are still in early stages, it is still difficult for researchers to obtain hardware mem-elements for research. In order to solve this problem, it is still necessary to build effective equivalent models of mem-elements to facilitate the research on their characteristics and applications. In this paper, a novel floating mem-element modeling method is proposed by connecting different passive circuit component to a universal interface while keeping the circuit topology unchanged. Compared with other floating universal mem-element models, the model built in this paper has simple structure, high working frequencies, thus making proposed models easier to implement. The feasibility and effectiveness of the mem-elements models based on the universal interface are successfully verified through theoretical analysis, PSPICE simulation results and hardware experimental results.
      通信作者: 李亚, liya2829@gpnu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金 (批准号: 61801154, 62101142)、广州市科技计划 (批准号: 201904010302, 202102020874)、广东省教育厅项目(批准号: 2021ZDZX1079, 2021KTSCX062)和广东技术师范大学人才专项(批准号: 2021SDKYA009)资助的课题
      Corresponding author: Li Ya, liya2829@gpnu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61801154, 62101142), the Science and Technology Program of Guangzhou, China (Grant Nos. 201904010302, 202102020874), the Featured Innovation Foundation of the Education Department of Guangdong Province, China (Grant Nos. 2021ZDZX1079, 2021KTSCX062), and the Doctoral Scientific Research Startup Fund of Guangdong Polytechnic Normal University, China (Grant No. 2021SDKYA009).
    [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1371Google Scholar

    [4]

    Mauro D, Marco M F, Fernando C, Chua L O 2021 IEEE Transactions on Circuits and Systems I: Regular Papers 68 14Google Scholar

    [5]

    Yuan F, Li Y 2019 Chaos 29 101101Google Scholar

    [6]

    Barraj I, Bahloul M A, Masmoudi M 2021 AEU-Inter. J. Electron. C. 132 153664Google Scholar

    [7]

    Wang M, Yu Y, Yang N, Yang C, Ma H 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) Xi'an, China, June 19−21, 2019

    [8]

    Emara A A M, Aboudina M M, Fahmy H A H 2017 Microelectron. J. 64 39Google Scholar

    [9]

    Dalgaty T, Castellani N, Turck C, Harabi K E, Vianello E 2021 Nat. Electron. 4 151Google Scholar

    [10]

    Liu Z, Tang J, Gao B, Yao P, Wu H 2020 Nat. Commun. 11 4234Google Scholar

    [11]

    Corinto F, Marco M, Forti M, Chua L 2019 IEEE T. Cybernetics 50 4758Google Scholar

    [12]

    Yang Y 2020 Nat. Commun. 11 3399Google Scholar

    [13]

    Shang D S, Chai Y C, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B Sin. 24 68402Google Scholar

    [14]

    申见昕, 尚大山, 孙阳 2018 物理学报 67 127501Google Scholar

    Shen J X, Shang D S, Sun Y 2018 Acta Phys. Sin. 67 127501Google Scholar

    [15]

    任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇 2021 物理学报 70 078701Google Scholar

    Ren K, Zhang K J, Qin X Z, Ren H X, Zhu S H, Yang F, Sun B, Zhao Y, Zhang Y 2021 Acta Phys. Sin. 70 078701Google Scholar

    [16]

    Han J, Song C, Gao S, Wang Y, Chen C, Pan F 2014 ACS Nano 8 10043Google Scholar

    [17]

    沈怡然, 李付鹏, 王光义 2020 电子与信息学报 42 844Google Scholar

    Shen Y R, Li F P, Wang G Y 2020 J. Electron. Infor. Technol. 42 844Google Scholar

    [18]

    Knowm Inc https://knowm.org/downloads/Knowm_Memeistors.pdf [2019-10-6]

    [19]

    Yuan F, Li Y, Wang G, Dou G, Chen G 2019 Entropy 21 188Google Scholar

    [20]

    Vista J, Ranjan A 2019 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 2020Google Scholar

    [21]

    Pu Y, Yu B A 2019 IEEE/CAA J. Automat. Sin. 7 237Google Scholar

    [22]

    Gupta S, Rai S K 2020 Wireless Pers. Commun. 113 773Google Scholar

    [23]

    Yesil A, Babacan Y 2020 IEEE Transactions on Circuits and Systems II: Express Briefs 68 1443Google Scholar

    [24]

    Sozen H, Cam U 2020 J. Circuit. Syst. Comput. 29 2050247Google Scholar

    [25]

    Pershin Y V, Ventra M 2011 Electron. Lett. 47 243Google Scholar

    [26]

    Yu D S, Liang Y, Iu HHC, Hu Y H 2014 Chin. Phys. B 23 070702Google Scholar

    [27]

    Fouda M E, Radwan A G 2012 Electron. Lett. 48 1454Google Scholar

    [28]

    梁燕, 于东升, 陈昊 2013 物理学报 62 158501Google Scholar

    Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501Google Scholar

    [29]

    李志军, 向林波, 肖文润 2017 电子与信息学报 39 1626Google Scholar

    Li Z J, Xiang L B, Xiao W R 2017 J. Electron. Infor. Technol. 39 1626Google Scholar

    [30]

    Zhao Q, Wang C, Zhang X 2019 Chaos 29 013141Google Scholar

    [31]

    Zheng C Y, Yu D S, Hu HHC, Fernando, T, Sun T T, Eshraghian J K, Guo H D 2019 IEEE T. Circuits I. 66 4793Google Scholar

    [32]

    Yu D S, Zhao X, Sun T, Iu HHC, Fernando T 2019 IEEE Transactions on Circuits and Systems II: Express Briefs 67 1334Google Scholar

    [33]

    Sharma P K, Ranjan R K, Khateb F, Kumngern M 2020 IEEE Access 8 171397Google Scholar

    [34]

    Wang C, Liu X, Hu X 2017 Chaos 27 033114Google Scholar

    [35]

    Korneev I A, Semenov V V 2017 Chaos: An Interdisciplinary J. Nonlinear Sci. 27 081104Google Scholar

    [36]

    Lin T, Iu HHC, Wang X, Wang X 2015 Int. J. Numer. Model. El. 28 275Google Scholar

    [37]

    Wang G, Shi C, Wang X, Yuan F 2017 Math. Probl. Eng. 2017 6504969Google Scholar

    [38]

    Fouda M E, Radwan A G 2014 Circuits, Syst. Signal Process. 33 1573Google Scholar

  • 图 1  通用模拟器设计

    Fig. 1.  Design of a universal emulator for building models of mem-elements.

    图 2  忆阻器模型的PSPICE仿真结果 (a) 不同频率激励下的忆阻器${v_{{\text{AB}}}}\text-{i_{{\text{AB}}}}$特性曲线; (b) 不同频率激励下的忆阻器忆导值$W_{\text{m}}$${v_{{\text{AB}}}}$的关系图; (c) 在Uo = 1 V, f = 100 kHz下, ${v_{{\text{AB}}}}$, ${i_{{\text{AB}}}}$, $ {\phi _{{\text{AB}}}}_{} $(用$v_{C_1}$表示)和$W_{\text{m}}$的时域波形图

    Fig. 2.  Measured simulation results of the proposed memristor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memductance $W_{\text{m}}$ plotted against the terminal voltage ${v_{{\text{AB}}}}$; (c) time-domain wave-forms of ${v_{{\text{AB}}}}$, ${i_{{\text{AB}}}}$, $ {\phi _{{\text{AB}}}} $(represented by $v_{C_1}$) and the memductance $W_{\text{m}}$ when Uo = 1 V, f = 100 kHz.

    图 3  忆容器模型的PSPICE仿真结果 (a) 不同频率激励下的忆容器${v_{{\text{AB}}}}\text-{q_{{\text{AB}}}}$(用${v_{{\text{AB}}}} \text- \left( {{{ - }}{v_{C2}}} \right)$表示)特性曲线; (b)不同频率激励下的忆容器忆容值$ {C_{\text{m}}} $${v_{{\text{AB}}}}$的关系图; (c) 在Uo = 1 V, $ f $= 80 kHz下, ${v_{{\text{AB}}}}$${q_{{\text{AB}}}}$(用${{ - }}{v_{C2}}$表示)、$ {\phi _{{\text{AB}}}} $(用${v_{C_1}}$表示)和$ {C_{\text{m}}} $的时域波形图

    Fig. 3.  Measured simulation results of the proposed memcapacitor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memcapacitance$ {C_{\text{m}}} $plotted against the terminal voltage $ {v_{{\text{AB}}}} $; (c) time-domain wave-forms of $ {v_{{\text{AB}}}} $, $ {q_{{\text{AB}}}} $(represented by${{ - }}{v_{C_2}}$), $ {\phi _{{\text{AB}}}} $(represented by${v_{C_1}}$) and the memcapacitance $ {C_{\text{m}}} $when Uo = 1 V, $ f $= 80 kHz.

    图 4  忆感器模型的PSPICE仿真结果 (a) 不同频率激励下的忆感器${\phi _{{\text{AB}}}} \text- {i_{{\text{AB}}}}$(用${i_1} \text- {i_{{\text{AB}}}}$表示)特性曲线; (b)不同频率激励下忆感器的忆感值倒数$ L_{\text{m}}^{ - 1} $$ {\phi _{{\text{AB}}}} $(用${i_1}$表示)的关系图; (c) 当Uo = 1 V, $ f $= 100 kHz时, ${i_{{\text{AB}}}}$, ${\rho _{{\text{AB}}}}$(用${v_{C_1}}$表示)、$ {\phi _{{\text{AB}}}} $$ L_{\text{m}}^{ - 1} $的时域波形图

    Fig. 4.  Measured simulation results of the proposed meminductor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the inverse meminductance $ L_{\text{m}}^{ - 1} $ plotted against the flux$ {\phi _{{\text{AB}}}} $(represented by $ i_1 $); (c) time-domain wave-forms of $ {i_{{\text{AB}}}} $, ${\rho _{{\text{AB}}}}$(represented by${v_{C_1}}$), $ {\phi _{{\text{AB}}}} $and the inverse meminductance $ L_{\text{m}}^{ - 1} $ when Uo = 1 V, $ f $= 100 kHz.

    图 5  通用模拟器硬件实验电路实现

    Fig. 5.  Implementation of the universal emulator in hardware experiment.

    图 6  在通用模拟器的Z1Z2接入不同的电阻、电容和电感元件组合, 分别实现忆阻器、忆容器和忆感器模型的硬件实验电路 (a) 忆阻器; (b) 忆容器; (c) 忆感器

    Fig. 6.  The experimental breadboard implementation of (a) memristor, (b) memcapacitor, (c) meminductor models based on the universal emulator by connecting different combinations of resistor, capacitor or inductor to Z1 and Z2.

    图 7  忆阻器模型的硬件电路实验结果 (a) 不同频率激励下的忆阻器${v_{{\text{AB}}}} \text- {i_{{\text{AB}}}}$(用${v_{{\text{AB}}}} \text- ({{ - }}{v_{R_3}})$表示)特性曲线; (b)不同频率激励下的忆阻器忆导值$ {W_{\text{m}}} $${v_{{\text{AB}}}}$的关系图; (c)在Uo = 3 V, $ f $ = 100 kHz下, $ {v_{{\text{AB}}}} $, $ {i_{{\text{AB}}}} $(用${{ - }}{v_{R_3}}$表示)、$ {\phi _{{\text{AB}}}} $(用${v_{C_1}}$表示)和$ {W_{\text{m}}} $的时域波形图

    Fig. 7.  Experimental results of the proposed memristor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memductance $ {W_{\text{m}}} $ plotted against the terminal voltage $ {v_{{\text{AB}}}} $; (c) time-domain wave-forms of ${v_{{\text{AB}}}}$, ${i_{{\text{AB}}}}$(represented by${{ - }}{v_{R_3}}$), $ {\phi _{{\text{AB}}}} $(represented by${v_{C_1}}$) and the memductance $ {W_{\text{m}}} $when Uo = 3 V, $ f $ = 100 kHz.

    图 8  忆容器模型的硬件实验结果 (a) 不同频率激励下的忆容器${v_{{\text{AB}}}}\text-{q_{{\text{AB}}}}$(用${v_{{\text{AB}}}}{{\text-}}\left( { - {v_{C_2}}} \right)$表示)特性曲线; (b)不同频率激励下的忆容器忆容值$ {C_{\text{m}}} $${v_{{\text{AB}}}}$的关系图; (c) 在Uo = 3 V, $ f $ = 80 kHz下${v_{{\text{AB}}}}$, ${q_{{\text{AB}}}}$(用${{ - }}{v_{C_2}}$表示)、$ {\phi _{{\text{AB}}}} $(用${v_{C_1}}$表示)和$ {C_{\text{m}}} $的时域波形图

    Fig. 8.  Experimental results of the proposed memcapacitor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memcapacitance $ {C_{\text{m}}} $ plotted against the terminal voltage ${v_{{\text{AB}}}}$; (c) time-domain wave-forms of ${v_{{\text{AB}}}}$, ${q_{{\text{AB}}}}$(represented by ${{ - }}{v_{C_2}}$), $ {\phi _{{\text{AB}}}} $(represented by ${v_{C_1}}$) and the memcapacitance $ {C_{\text{m}}} $ when Uo = 3 V, $ f $ = 80 kHz.

    图 9  忆感器模型的硬件实验结果 (a) 不同频率激励下的忆感器${\phi _{{\text{AB}}}}\text-{i_{{\text{AB}}}}$(用$( - {v_{R1}}){{\text- (}} - {v_{R2}})$表示)特性曲线; (b)不同频率激励下忆感器的忆感值倒数$L_{\text{m}}^{{{ - 1}}}$$ {\phi _{{\text{AB}}}} $(用$ - {v_{R1}} $表示)的关系图; (c) 在Uo = 3 V, $ f $ = 80 kHz下$ {i_{{\text{AB}}}} $(用$- {v_{R_2}}$表示)、$ {\phi _{{\text{AB}}}} $(用$- {v_{R_1}}$表示)、$ {\rho _{{\text{AB}}}} $(用${v_{C_1}}$表示)和$L_{\text{m}}^{ - 1}$的时域波形图

    Fig. 9.  Experimental results of the proposed meminductor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the inverse meminductance $L_{{{\rm{m}}}}^{{{ - 1}}}$ plotted against the flux $ {\phi _{{\text{AB}}}} $(represented by${{ - }}{v_{R_1}}$) ; (c) time-domain wave-forms of ${i_{{\text{AB}}}}$(represented by${{ - }}{v_{R_2}}$), ${\rho _{{\text{AB}}}}$(represented by${v_{C_1}}$), $ {\phi _{{\text{AB}}}} $(represented by$- {v_{R_1}}$), $ {\rho _{{\text{AB}}}} $(represented by ${v_{C_1}}$) and the inverse meminductance $L_{\text{m}}^{{{ - 1}}}$ when Uo = 3 V, $ f $ = 80 kHz.

    表 1  基于通用模拟器的记忆元件模型对应特征比较

    Table 1.  Comparison of characteristics of different kinds of mem-element models based on the proposed universal emulator.

    记忆元件类型忆阻器忆容器忆感器
    电路拓扑结构通用模拟器
    阻抗元件$ {Z_1} $电阻$ {R_{\text{2}}} $电阻$ {R_{\text{2}}} $电感$ {L_{\text{1}}} $
    阻抗元件$ {Z_{\text{2}}} $电阻$ {R_{\text{3}}} $电容$ {C_{\text{2}}} $电阻$ {R_{\text{2}}} $
    内部状态变量$q {\text{-}} \phi$$\sigma {\text{-}} \phi$$q {\text{-}} \rho$
    本构方程$ W\left( {{\phi _{{\text{AB}}}}} \right) = {\alpha _1}{\phi _{{\text{AB}}}} + {\beta _1} $$C_{\text{m} }\left( { {\phi _{ {\text{AB} } } }} \right) = {\alpha _2}{\phi _{ {\text{AB} } } } + {\beta _2}$$L{_ {\text{m} }^{ - 1} }\left( { {\rho _{ {\text{AB} } } }} \right) = {\alpha _3}{\rho _{ {\text{AB} } } } + {\beta _3}$
    $ {\alpha _x} $值${\alpha _{\text{1} } } = \dfrac{ { {R_{\text{1} } } }}{ {10 R_{\text{2} }^{\text{2} }{R_{\text{3} } }{C_{\text{1} } } }}$${\alpha _{\text{2} } } = \dfrac{ { {R_{\text{1} } }{C_{\text{2} } } }}{ {10 R_{\text{2} }^{\text{2} }{C_{\text{1} } } }}$${\alpha _{\text{3} } } = \dfrac{ { {R_{\text{1} } } }}{ {10 L_{\text{1} }^{\text{2} }{R_{\text{2} } }{C_{\text{1} } } }}$
    $ {\beta _x} $值$ {\beta _{\text{1} } } = - \dfrac{ { {R_{\text{1} } } } }{ { {\text{10} }{R_{\text{2} } }{R_{\text{3} } } } }V_{\text{s} } $$ {\beta _{\text{2} } } = - \dfrac{ { {R_{\text{1} } }{C_{\text{2} } } } }{ { {\text{10} }{R_{\text{2} } } } }V_{\text{s} } $${\beta _{\text{3} } } = - \dfrac{ { {R_{\text{1} } } }}{ { {\text{10} }{L_{\text{1} } }{R_{\text{2} } } }}{V_{\text{s} } }$
    下载: 导出CSV
  • [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1371Google Scholar

    [4]

    Mauro D, Marco M F, Fernando C, Chua L O 2021 IEEE Transactions on Circuits and Systems I: Regular Papers 68 14Google Scholar

    [5]

    Yuan F, Li Y 2019 Chaos 29 101101Google Scholar

    [6]

    Barraj I, Bahloul M A, Masmoudi M 2021 AEU-Inter. J. Electron. C. 132 153664Google Scholar

    [7]

    Wang M, Yu Y, Yang N, Yang C, Ma H 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) Xi'an, China, June 19−21, 2019

    [8]

    Emara A A M, Aboudina M M, Fahmy H A H 2017 Microelectron. J. 64 39Google Scholar

    [9]

    Dalgaty T, Castellani N, Turck C, Harabi K E, Vianello E 2021 Nat. Electron. 4 151Google Scholar

    [10]

    Liu Z, Tang J, Gao B, Yao P, Wu H 2020 Nat. Commun. 11 4234Google Scholar

    [11]

    Corinto F, Marco M, Forti M, Chua L 2019 IEEE T. Cybernetics 50 4758Google Scholar

    [12]

    Yang Y 2020 Nat. Commun. 11 3399Google Scholar

    [13]

    Shang D S, Chai Y C, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B Sin. 24 68402Google Scholar

    [14]

    申见昕, 尚大山, 孙阳 2018 物理学报 67 127501Google Scholar

    Shen J X, Shang D S, Sun Y 2018 Acta Phys. Sin. 67 127501Google Scholar

    [15]

    任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇 2021 物理学报 70 078701Google Scholar

    Ren K, Zhang K J, Qin X Z, Ren H X, Zhu S H, Yang F, Sun B, Zhao Y, Zhang Y 2021 Acta Phys. Sin. 70 078701Google Scholar

    [16]

    Han J, Song C, Gao S, Wang Y, Chen C, Pan F 2014 ACS Nano 8 10043Google Scholar

    [17]

    沈怡然, 李付鹏, 王光义 2020 电子与信息学报 42 844Google Scholar

    Shen Y R, Li F P, Wang G Y 2020 J. Electron. Infor. Technol. 42 844Google Scholar

    [18]

    Knowm Inc https://knowm.org/downloads/Knowm_Memeistors.pdf [2019-10-6]

    [19]

    Yuan F, Li Y, Wang G, Dou G, Chen G 2019 Entropy 21 188Google Scholar

    [20]

    Vista J, Ranjan A 2019 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 2020Google Scholar

    [21]

    Pu Y, Yu B A 2019 IEEE/CAA J. Automat. Sin. 7 237Google Scholar

    [22]

    Gupta S, Rai S K 2020 Wireless Pers. Commun. 113 773Google Scholar

    [23]

    Yesil A, Babacan Y 2020 IEEE Transactions on Circuits and Systems II: Express Briefs 68 1443Google Scholar

    [24]

    Sozen H, Cam U 2020 J. Circuit. Syst. Comput. 29 2050247Google Scholar

    [25]

    Pershin Y V, Ventra M 2011 Electron. Lett. 47 243Google Scholar

    [26]

    Yu D S, Liang Y, Iu HHC, Hu Y H 2014 Chin. Phys. B 23 070702Google Scholar

    [27]

    Fouda M E, Radwan A G 2012 Electron. Lett. 48 1454Google Scholar

    [28]

    梁燕, 于东升, 陈昊 2013 物理学报 62 158501Google Scholar

    Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501Google Scholar

    [29]

    李志军, 向林波, 肖文润 2017 电子与信息学报 39 1626Google Scholar

    Li Z J, Xiang L B, Xiao W R 2017 J. Electron. Infor. Technol. 39 1626Google Scholar

    [30]

    Zhao Q, Wang C, Zhang X 2019 Chaos 29 013141Google Scholar

    [31]

    Zheng C Y, Yu D S, Hu HHC, Fernando, T, Sun T T, Eshraghian J K, Guo H D 2019 IEEE T. Circuits I. 66 4793Google Scholar

    [32]

    Yu D S, Zhao X, Sun T, Iu HHC, Fernando T 2019 IEEE Transactions on Circuits and Systems II: Express Briefs 67 1334Google Scholar

    [33]

    Sharma P K, Ranjan R K, Khateb F, Kumngern M 2020 IEEE Access 8 171397Google Scholar

    [34]

    Wang C, Liu X, Hu X 2017 Chaos 27 033114Google Scholar

    [35]

    Korneev I A, Semenov V V 2017 Chaos: An Interdisciplinary J. Nonlinear Sci. 27 081104Google Scholar

    [36]

    Lin T, Iu HHC, Wang X, Wang X 2015 Int. J. Numer. Model. El. 28 275Google Scholar

    [37]

    Wang G, Shi C, Wang X, Yuan F 2017 Math. Probl. Eng. 2017 6504969Google Scholar

    [38]

    Fouda M E, Radwan A G 2014 Circuits, Syst. Signal Process. 33 1573Google Scholar

  • [1] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [2] 武长春, 周莆钧, 王俊杰, 李国, 胡绍刚, 于奇, 刘洋. 基于忆阻器的脉冲神经网络硬件加速器架构设计. 物理学报, 2022, 71(14): 148401. doi: 10.7498/aps.71.20220098
    [3] 马腾飞, 王敏杰, 王圣智, 谢燕, 焦浩乐, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210881
    [4] 季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇. 从“魔角”石墨烯到摩尔超晶格量子模拟器. 物理学报, 2021, 70(11): 118101. doi: 10.7498/aps.70.20210476
    [5] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [6] 刘汝新, 董瑞新, 闫循领, 肖夏. 忆阻器单阻态下的记忆电容行为及多态特性. 物理学报, 2019, 68(6): 068502. doi: 10.7498/aps.68.20181836
    [7] 王晓媛, 俞军, 王光义. 忆阻器、忆容器和忆感器的Simulink建模及其特性分析. 物理学报, 2018, 67(9): 098501. doi: 10.7498/aps.67.20172674
    [8] 元峰, 刘川, 耿正, 崔严光, 王林, 万见峰, 张骥华, 戎咏华. 锰基高温反铁磁形状记忆合金中马氏体逆相变的表面浮突研究. 物理学报, 2015, 64(1): 016801. doi: 10.7498/aps.64.016801
    [9] 李志军, 曾以成, 谭志平. 一个通用的记忆器件模拟器. 物理学报, 2014, 63(9): 098501. doi: 10.7498/aps.63.098501
    [10] 杨理践, 刘斌, 高松巍, 陈立佳. 金属磁记忆效应的第一性原理计算与实验研究. 物理学报, 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [11] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [12] 梁燕, 于东升, 陈昊. 基于模拟电路的新型忆感器等效模型. 物理学报, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [13] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量. 物理学报, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [14] 徐煜明, 包伯成, 徐强. 基于微控制器数字硬件实现的网格涡卷超混沌系统. 物理学报, 2010, 59(9): 5959-5965. doi: 10.7498/aps.59.5959
    [15] 张朝霞, 禹思敏. 基于数字信号处理器的语音无线混沌通信——系统设计与硬件实现. 物理学报, 2010, 59(5): 3017-3026. doi: 10.7498/aps.59.3017
    [16] 李亚, 张正明, 陶志杰. 一个超混沌六阶蔡氏电路及其硬件实现. 物理学报, 2009, 58(10): 6818-6822. doi: 10.7498/aps.58.6818
    [17] 李 亚, 禹思敏, 戴青云, 刘明华, 刘 庆. 一种新的蔡氏电路设计方法与硬件实现. 物理学报, 2006, 55(8): 3938-3944. doi: 10.7498/aps.55.3938
    [18] 张东科, 张冶文, 赫 丽, 李宏强, 陈 鸿. 利用集总L-C元件构造的一维metamaterials特性的实验研究. 物理学报, 2005, 54(2): 768-772. doi: 10.7498/aps.54.768
    [19] 曾 丽, 娄采云, 章恩耀. 偏振模色散模拟器的特性. 物理学报, 2005, 54(3): 1241-1246. doi: 10.7498/aps.54.1241
    [20] 叶碧青, 马忠林, 凌君达. 多个激活元件激光器振荡模体积的匹配. 物理学报, 1979, 28(1): 15-20. doi: 10.7498/aps.28.15
计量
  • 文章访问数:  5310
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 修回日期:  2021-07-13
  • 上网日期:  2021-08-17
  • 刊出日期:  2021-12-05

/

返回文章
返回