搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合飞秒/皮秒相干反斯托克斯拉曼散射的动态高温燃烧场温度测量

田子阳 赵会杰 尉昊赟 李岩

引用本文:
Citation:

基于混合飞秒/皮秒相干反斯托克斯拉曼散射的动态高温燃烧场温度测量

田子阳, 赵会杰, 尉昊赟, 李岩

Thermometry in dynamic and high-temperature combustion filed based on hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering

Tian Zi-Yang, Zhao Hui-Jie, Wei Hao-Yun, Li Yan
PDF
HTML
导出引用
  • 温度测量对燃烧过程中的污染控制与节能减排具有重要意义, 而实际应用中复杂的动态高温燃烧场对温度测量技术的测量精度与响应速度提出了严格的要求. 相干反斯托克斯拉曼散射技术作为一种较为先进的光谱测温技术, 具有较高的空间分辨率, 可以在高温环境下实现准确的温度测量, 具有应用于复杂燃烧场的潜力. 针对复杂的动态高温燃烧场的测温需求, 本文提出了一种基于二次谐波带宽压缩方法的混合飞秒/皮秒相干反斯托克斯拉曼散射测温方法, 实现了对动态高温燃烧场温度的准确测量与动态响应. 实验中利用标准燃烧器模拟了1700—2200 K温度范围内的动态高温燃烧场, 利用该测温方法, 以千赫兹的光谱采集速率, 对模拟的动态火焰的温度进行了连续70 s测量. 测量结果显示, 该方法在高温下温度测量的相对误差小于1.2 %, 相对标准偏差小于1.8 %, 同时能动态追踪0.2 s内的温度变化过程, 验证了该方法测温的准确性、稳定性以及响应速度, 为复杂的动态高温燃烧场的温度测量提供了一种新的测量方案.
    Temperature, as an important parameter in combustion diagnostic process, will directly affect the combustion efficiency and the generation of combustion products. The accurate measuring of combustion temperature and then controlling of combustion state can not only contribute to avoiding the generation of harmful waste gas, such as carbon monoxide (CO) and oxynitride (NOx), but also improve the combustion efficiency, thereby saving the energy. However, in practical applications, dynamic and high-temperature combustion field has strict requirements for measurement accuracy and response speed of the thermometry technology. As an advanced spectral thermometry technology, coherent anti-Stokes Raman scattering (CARS) has a much higher spatial resolution, and can achieve accurate temperature measurement in high-temperature environment, so CARS has the potential applications in complex combustion field. For the temperature measurement requirements in the complex dynamic and high-temperature combustion field, we demonstrate a hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering thermometry method through using the second harmonic bandwidth compression method, and achieve accurate measurements and dynamic response to temperature in dynamic and high-temperature combustion field. By using the narrow-band picosecond pulse obtained from the sum frequency process of femtosecond pulse in the BBO crystal as a probe pulse, this thermometry method can achieve single-shot, 1-kHz temperature measurement in high-temperature flame. We utilize the standard burner to simulate dynamic combustion field in a range of 1700–2200 K by changing the equivalence ratio quickly, and carry out continuous temperature measurement in 70 s by our thermometry method in this simulated dynamic and high-temperature flame. The least square method is used to fit the theoretical spectrum library to the actual single spectrum, and the fitting temperature corresponding to the actual single spectrum is obtained from the curve of fitting error. The continuous temperature measurements in 70 s exhibit superior performance in dynamic and high-temperature flame with a temperature inaccuracy less than 1.2% and a precision less than 1.8% at four different temperatures, and can track the temperature variation process within 0.2 s dynamically. These results verify the accuracy, stability and response speed in dynamic and high-temperature environment, and provide a new system scheme for thermometry in practical harsh combustion field.
      通信作者: 李岩, liyan@mail.tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFB2010701, 2020YFC2200101)资助的课题
      Corresponding author: Li Yan, liyan@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2020YFB2010701, 2020YFC2200101).
    [1]

    张步强, 许振宇, 刘建国, 等 2019 物理学报 68 233301Google Scholar

    Zhang B Q, Xu Z Y, Liu J G, et al. 2019 Acta Phys. Sin. 68 233301Google Scholar

    [2]

    冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌 2012 物理学报 61 134702Google Scholar

    Feng Y X, Huang Q X, Liang J H, Wang F, Yan J H, Chi Y 2012 Acta Phys. Sin. 61 134702Google Scholar

    [3]

    李帅瑶, 张大源, 高强, 李博, 何勇, 王智化 2020 物理学报 69 234207Google Scholar

    Li S Y, Zhang D Y, Gao Q, Li B, He Y, Wang Z H 2020 Acta Phys. Sin. 69 234207Google Scholar

    [4]

    Moya F, Druet S A J, Taran J P E 1975 Opt. Commun. 13 169Google Scholar

    [5]

    Roy S, Meyer T R, Lucht R P, Afzelius M, Bengtsson P E, Gord J R 2004 Opt. Lett. 29 1843Google Scholar

    [6]

    Beyrau F, Bräuer A, Seeger T, Leipertz A 2004 Opt. Lett. 29 247Google Scholar

    [7]

    Gord J R, Meyer T R, Roy S 2008 Annu. Rev. Anal. Chem. 1 663Google Scholar

    [8]

    Roy S, Gord J R, Patnaik A K 2010 Prog. Energy Combus. Sci. 36 280Google Scholar

    [9]

    Laubereau A, Kaiser W 1978 Rev. Mod. Phys. 50 607Google Scholar

    [10]

    Kamga F M, Sceats M G 1980 Opt. Lett. 5 126Google Scholar

    [11]

    Meyer T R, Roy S, Gord J R 2007 Appl. Spectrosc. 61 1135Google Scholar

    [12]

    Seeger T, Kiefer J, Leipertz A, Patterson B, Kliewer C, Settersten T 2009 Opt. Lett. 34 3755Google Scholar

    [13]

    Thomas S, Johannes K, Yi G, Patterson B D, Kliewer C J, Settersten T B 2010 Opt. Lett. 35 2040Google Scholar

    [14]

    Beaud P, Frey H M, Lang T, Motzkus M 2001 Chem. Phys. Lett. 344 407Google Scholar

    [15]

    Lucht R P, Roy S, Meyer T R, Gord J R 2006 Appl. Phys. Lett. 89 251112Google Scholar

    [16]

    Wrzesinski P J, Stauffer H U, Kulatilaka W D, Gord J R, Roy S 2013 J. Raman Spectrosc. 44 1344Google Scholar

    [17]

    Lang T, Motzkus M 2002 J. Opt. Soc. Am. B 19 340Google Scholar

    [18]

    Roy S, Kulatilaka W D, Richardson D R, Lucht R P, Gord J R 2009 Opt. Lett. 34 3857Google Scholar

    [19]

    Richardson D R, Stauffer H U, Roy S, Gord J R 2017 Appl. Opt. 56 E37Google Scholar

    [20]

    Courtney T L, Bohlin A, Patterson B D, Kliewer C J 2017 J. Chem. Phys. 146 224202Google Scholar

    [21]

    Yang C B, He P, Escofet-Martin D, Peng J B, Fan R W, Yu X, Dunn-Rankin D 2018 Appl. Opt. 57 197Google Scholar

    [22]

    Zhao H, Tian Z, Wu T, Li Y, Wei H 2020 Appl. Phys. Lett. 116 111103Google Scholar

    [23]

    Richardson D R, Kearney S P, Guildenbecher D R 2020 Appl. Opt. 59 8293Google Scholar

    [24]

    Miller J D, Slipchenko M N, Meyer T R, Stauffer H U, Gord J R 2010 Opt. Lett. 35 2430Google Scholar

    [25]

    Zhao H, Tian Z, Li Y, Wei H 2021 Opt. Lett. 46 1688Google Scholar

    [26]

    Zhao H, Tian Z, Wu T, Li Y, Wei H 2021 Appl. Phys. Lett. 118 071107Google Scholar

    [27]

    Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar

    [28]

    Shirley J A, Hall R J, Eckbreth A C 1980 Opt. Lett. 5 380Google Scholar

    [29]

    Chloe D 2017 Ph. D. Dissertation (Iowa: Iowa State University)

    [30]

    Vestin F, Nilsson K, Bengtsson P E 2008 Appl. Opt. 47 1893Google Scholar

    [31]

    Bertagnolli K E, Lucht R 1996 Symp. (Int.) Combust. 26 1825Google Scholar

    [32]

    Kovac J D 1998 J. Chem. Edu. 75 545Google Scholar

    [33]

    Miller J D 2012 Ph. D. Dissertation (Iowa: Iowa State University)

    [34]

    Rahn L A, Palmer R E 1986 J. Opt. Soc. Am. B 3 1164Google Scholar

    [35]

    Seeger T, Beyrau F, Bräuer A, Leipertz A 2003 J. Raman Spectrosc. 34 932Google Scholar

    [36]

    Weigand P, Rainer L, Wolfgang M 2003 http://www.dlr.de/vt/datenarchiv

  • 图 1  能级跃迁示意图

    Fig. 1.  Diagram of energy level transitions.

    图 2  (a) 共线式相位匹配图; (b) BOXCARS相位匹配图; (c) 折叠式BOXCARS相位匹配图

    Fig. 2.  (a) Diagram of collinear phase matching; (b) diagram of BOXCARS phase matching; (c) diagram of folded BOXCARS phase matching.

    图 3  混合飞秒皮秒CARS光路系统图. BS1−BS3, 分光镜; M1−M15, 反射镜; G1−G3, 光栅; CL1和CL2, 柱面透镜; RM1和RM3, 凸面反射镜; RM2和RM4, 凹面反射镜; E1和E2, 直边; L1−L3, 透镜; OPA, 光学参量放大器; EMCCD, 电子倍增电荷耦合器件

    Fig. 3.  Diagram of hybrid femtosecond/picosecond CARS optical system. BS1−BS3, beam splitter; M1−M15, mirror; G1−G3, grating; CL1 and CL2, cylindrical lens; RM1 and RM3, concave rear mirror; RM2 and RM4, convex rear mirror; E1 and E2, edge; L1−L3, lens; OPA, optical parametric amplifier; EMCCD, electron multiplying charge coupled device.

    图 4  (a) 燃烧器实物图; (b) 平面火焰图; (c) 燃烧系统图

    Fig. 4.  (a) Image of burner; (b) image of flat flame; (c) diagram of combustion system.

    图 5  (a) 原始光谱; (b) 处理后的归一化光谱; (c) 拟合误差曲线; (d) 拟合光谱与实际光谱的对比

    Fig. 5.  (a) Original spectrum; (b) normalized spectrum after processing; (c) curve of fitting error; (d) comparison of fitting spectrum with actual spectrum.

    图 6  70 s动态温度测量结果 (a) 28.6—29 s局部放大图; (b) 65.2—65.6 s局部放大图

    Fig. 6.  Results of dynamic temperature measurement within 70 s: (a) Local enlarged between 28.6 s and 29 s; (b) local enlarged between 65.2 s and 65.6 s.

    图 7  不同流速配比下测量温度的柱状分布图 (a) 0—8 s段; (b) 9—28.5 s段; (c) 28.9—48.8 s段; (d) 49—65.3 s段

    Fig. 7.  Histograms of temperature measurements in different flow velocity ratios: (a) From 0 s to 8 s; (b) from 9 s to 28.5 s; (c) from 28.9 s to 48.8 s; (d) from 49 s to 65.3 s.

    图 8  单幅光谱拟合结果 (a) 0—8 s段; (b) 9—28.5 s段; (c) 28.9—48.8 s段; (d) 49—65.3 s段

    Fig. 8.  Fitting results of single shot: (a) From 0 s to 8 s; (b) from 9 s to 28.5 s; (c) from 28.9 s to 48.8 s; (d) from 49 s to 65.3 s.

    表 1  4种流速配比及其对应参考温度[36]

    Table 1.  Four flow velocity ratios and their corresponding reference temperatures.

    流速/(标准升·min–1)参考温度/K
    空气甲烷
    15.001.101706
    30.302.551967
    15.001.421799
    36.183.422110
    下载: 导出CSV

    表 2  4个流速配比下测温的误差分析

    Table 2.  Error analysis of temperature measurement in four different flow velocity ratios.

    时间段参考温度/K相对误差相对标准偏差
    0—8 s17061.19%1.75%
    9—28.5 s19670.53%1.67%
    28.9—48.8 s17990.42%1.42%
    49—65.3 s21100.21%1.71%
    下载: 导出CSV
  • [1]

    张步强, 许振宇, 刘建国, 等 2019 物理学报 68 233301Google Scholar

    Zhang B Q, Xu Z Y, Liu J G, et al. 2019 Acta Phys. Sin. 68 233301Google Scholar

    [2]

    冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌 2012 物理学报 61 134702Google Scholar

    Feng Y X, Huang Q X, Liang J H, Wang F, Yan J H, Chi Y 2012 Acta Phys. Sin. 61 134702Google Scholar

    [3]

    李帅瑶, 张大源, 高强, 李博, 何勇, 王智化 2020 物理学报 69 234207Google Scholar

    Li S Y, Zhang D Y, Gao Q, Li B, He Y, Wang Z H 2020 Acta Phys. Sin. 69 234207Google Scholar

    [4]

    Moya F, Druet S A J, Taran J P E 1975 Opt. Commun. 13 169Google Scholar

    [5]

    Roy S, Meyer T R, Lucht R P, Afzelius M, Bengtsson P E, Gord J R 2004 Opt. Lett. 29 1843Google Scholar

    [6]

    Beyrau F, Bräuer A, Seeger T, Leipertz A 2004 Opt. Lett. 29 247Google Scholar

    [7]

    Gord J R, Meyer T R, Roy S 2008 Annu. Rev. Anal. Chem. 1 663Google Scholar

    [8]

    Roy S, Gord J R, Patnaik A K 2010 Prog. Energy Combus. Sci. 36 280Google Scholar

    [9]

    Laubereau A, Kaiser W 1978 Rev. Mod. Phys. 50 607Google Scholar

    [10]

    Kamga F M, Sceats M G 1980 Opt. Lett. 5 126Google Scholar

    [11]

    Meyer T R, Roy S, Gord J R 2007 Appl. Spectrosc. 61 1135Google Scholar

    [12]

    Seeger T, Kiefer J, Leipertz A, Patterson B, Kliewer C, Settersten T 2009 Opt. Lett. 34 3755Google Scholar

    [13]

    Thomas S, Johannes K, Yi G, Patterson B D, Kliewer C J, Settersten T B 2010 Opt. Lett. 35 2040Google Scholar

    [14]

    Beaud P, Frey H M, Lang T, Motzkus M 2001 Chem. Phys. Lett. 344 407Google Scholar

    [15]

    Lucht R P, Roy S, Meyer T R, Gord J R 2006 Appl. Phys. Lett. 89 251112Google Scholar

    [16]

    Wrzesinski P J, Stauffer H U, Kulatilaka W D, Gord J R, Roy S 2013 J. Raman Spectrosc. 44 1344Google Scholar

    [17]

    Lang T, Motzkus M 2002 J. Opt. Soc. Am. B 19 340Google Scholar

    [18]

    Roy S, Kulatilaka W D, Richardson D R, Lucht R P, Gord J R 2009 Opt. Lett. 34 3857Google Scholar

    [19]

    Richardson D R, Stauffer H U, Roy S, Gord J R 2017 Appl. Opt. 56 E37Google Scholar

    [20]

    Courtney T L, Bohlin A, Patterson B D, Kliewer C J 2017 J. Chem. Phys. 146 224202Google Scholar

    [21]

    Yang C B, He P, Escofet-Martin D, Peng J B, Fan R W, Yu X, Dunn-Rankin D 2018 Appl. Opt. 57 197Google Scholar

    [22]

    Zhao H, Tian Z, Wu T, Li Y, Wei H 2020 Appl. Phys. Lett. 116 111103Google Scholar

    [23]

    Richardson D R, Kearney S P, Guildenbecher D R 2020 Appl. Opt. 59 8293Google Scholar

    [24]

    Miller J D, Slipchenko M N, Meyer T R, Stauffer H U, Gord J R 2010 Opt. Lett. 35 2430Google Scholar

    [25]

    Zhao H, Tian Z, Li Y, Wei H 2021 Opt. Lett. 46 1688Google Scholar

    [26]

    Zhao H, Tian Z, Wu T, Li Y, Wei H 2021 Appl. Phys. Lett. 118 071107Google Scholar

    [27]

    Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar

    [28]

    Shirley J A, Hall R J, Eckbreth A C 1980 Opt. Lett. 5 380Google Scholar

    [29]

    Chloe D 2017 Ph. D. Dissertation (Iowa: Iowa State University)

    [30]

    Vestin F, Nilsson K, Bengtsson P E 2008 Appl. Opt. 47 1893Google Scholar

    [31]

    Bertagnolli K E, Lucht R 1996 Symp. (Int.) Combust. 26 1825Google Scholar

    [32]

    Kovac J D 1998 J. Chem. Edu. 75 545Google Scholar

    [33]

    Miller J D 2012 Ph. D. Dissertation (Iowa: Iowa State University)

    [34]

    Rahn L A, Palmer R E 1986 J. Opt. Soc. Am. B 3 1164Google Scholar

    [35]

    Seeger T, Beyrau F, Bräuer A, Leipertz A 2003 J. Raman Spectrosc. 34 932Google Scholar

    [36]

    Weigand P, Rainer L, Wolfgang M 2003 http://www.dlr.de/vt/datenarchiv

  • [1] 杨文斌, 张华磊, 齐新华, 车庆丰, 周江宁, 白冰, 陈爽, 母金河. 非平衡等离子体流场相干反斯托克斯拉曼散射光谱计算及振转温度测量. 物理学报, 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] 杨鑫宇, 彭志敏, 丁艳军, 杜艳君. 基于宽带紫外吸收的火焰温度和OH/NH/NO浓度同步测量. 物理学报, 2022, 71(17): 173301. doi: 10.7498/aps.71.20220208
    [3] 王建海, 钱建强, 窦志鹏, 林锐, 许泽宇, 程鹏, 王丞, 李磊, 李英姿. 基于小波变换的多频静电力显微镜动态过程测量方法. 物理学报, 2022, 71(9): 096801. doi: 10.7498/aps.71.20212095
    [4] 张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐. 毫米级高分辨率的混沌激光分布式光纤测温技术. 物理学报, 2019, 68(10): 104208. doi: 10.7498/aps.68.20190018
    [5] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究. 物理学报, 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [6] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨. 相干反斯托克斯拉曼散射显微成像技术研究. 物理学报, 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [7] 林子扬, 万辉, 尹君, 侯国辉, 牛憨笨. 分子环境变化对振动退相时间影响的实验研究. 物理学报, 2015, 64(14): 143301. doi: 10.7498/aps.64.143301
    [8] 瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云. 激光诱导热光栅光谱测温技术研究. 物理学报, 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [9] 张赛文, 陈丹妮, 刘双龙, 刘伟, 牛憨笨. 纳米分辨相干反斯托克斯拉曼散射显微成像. 物理学报, 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [10] 李亚晖, 梁闰富, 邱俊鹏, 林子扬, 屈军乐, 刘立新, 尹君, 牛憨笨. 紧聚焦条件下相干反斯托克斯拉曼散射信号场的矢量分析. 物理学报, 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [11] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成. 物理学报, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [12] 尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨. 多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究. 物理学报, 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [13] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究. 物理学报, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [14] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量. 物理学报, 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [15] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [16] 刘伟, 陈丹妮, 刘双龙, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术及其探测极限分析. 物理学报, 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [17] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰. 基于可调谐半导体激光器吸收光谱的温度测量方法研究. 物理学报, 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [18] 于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬. 基于超连续光谱激发的时间分辨相干反斯托克斯拉曼散射方法与实验研究. 物理学报, 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [19] 童 凯, 崔卫卫, 汪梅婷, 李志全. 一维缺陷光子晶体温度的测量. 物理学报, 2008, 57(2): 762-766. doi: 10.7498/aps.57.762
    [20] 吕少哲, 陈宝玖, 黄世华, 王笑军, 陆丽珠, 严懋勋. SrAl12O19∶Pr3+中的热激发. 物理学报, 2003, 52(4): 1009-1012. doi: 10.7498/aps.52.1009
计量
  • 文章访问数:  6329
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-17
  • 修回日期:  2021-07-02
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回