-
温度测量对燃烧过程中的污染控制与节能减排具有重要意义, 而实际应用中复杂的动态高温燃烧场对温度测量技术的测量精度与响应速度提出了严格的要求. 相干反斯托克斯拉曼散射技术作为一种较为先进的光谱测温技术, 具有较高的空间分辨率, 可以在高温环境下实现准确的温度测量, 具有应用于复杂燃烧场的潜力. 针对复杂的动态高温燃烧场的测温需求, 本文提出了一种基于二次谐波带宽压缩方法的混合飞秒/皮秒相干反斯托克斯拉曼散射测温方法, 实现了对动态高温燃烧场温度的准确测量与动态响应. 实验中利用标准燃烧器模拟了1700—2200 K温度范围内的动态高温燃烧场, 利用该测温方法, 以千赫兹的光谱采集速率, 对模拟的动态火焰的温度进行了连续70 s测量. 测量结果显示, 该方法在高温下温度测量的相对误差小于1.2 %, 相对标准偏差小于1.8 %, 同时能动态追踪0.2 s内的温度变化过程, 验证了该方法测温的准确性、稳定性以及响应速度, 为复杂的动态高温燃烧场的温度测量提供了一种新的测量方案.
-
关键词:
- 相干反斯托克斯拉曼散射 /
- 温度测量 /
- 动态测量
Temperature, as an important parameter in combustion diagnostic process, will directly affect the combustion efficiency and the generation of combustion products. The accurate measuring of combustion temperature and then controlling of combustion state can not only contribute to avoiding the generation of harmful waste gas, such as carbon monoxide (CO) and oxynitride (NOx), but also improve the combustion efficiency, thereby saving the energy. However, in practical applications, dynamic and high-temperature combustion field has strict requirements for measurement accuracy and response speed of the thermometry technology. As an advanced spectral thermometry technology, coherent anti-Stokes Raman scattering (CARS) has a much higher spatial resolution, and can achieve accurate temperature measurement in high-temperature environment, so CARS has the potential applications in complex combustion field. For the temperature measurement requirements in the complex dynamic and high-temperature combustion field, we demonstrate a hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering thermometry method through using the second harmonic bandwidth compression method, and achieve accurate measurements and dynamic response to temperature in dynamic and high-temperature combustion field. By using the narrow-band picosecond pulse obtained from the sum frequency process of femtosecond pulse in the BBO crystal as a probe pulse, this thermometry method can achieve single-shot, 1-kHz temperature measurement in high-temperature flame. We utilize the standard burner to simulate dynamic combustion field in a range of 1700–2200 K by changing the equivalence ratio quickly, and carry out continuous temperature measurement in 70 s by our thermometry method in this simulated dynamic and high-temperature flame. The least square method is used to fit the theoretical spectrum library to the actual single spectrum, and the fitting temperature corresponding to the actual single spectrum is obtained from the curve of fitting error. The continuous temperature measurements in 70 s exhibit superior performance in dynamic and high-temperature flame with a temperature inaccuracy less than 1.2% and a precision less than 1.8% at four different temperatures, and can track the temperature variation process within 0.2 s dynamically. These results verify the accuracy, stability and response speed in dynamic and high-temperature environment, and provide a new system scheme for thermometry in practical harsh combustion field.[1] 张步强, 许振宇, 刘建国, 等 2019 物理学报 68 233301Google Scholar
Zhang B Q, Xu Z Y, Liu J G, et al. 2019 Acta Phys. Sin. 68 233301Google Scholar
[2] 冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌 2012 物理学报 61 134702Google Scholar
Feng Y X, Huang Q X, Liang J H, Wang F, Yan J H, Chi Y 2012 Acta Phys. Sin. 61 134702Google Scholar
[3] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化 2020 物理学报 69 234207Google Scholar
Li S Y, Zhang D Y, Gao Q, Li B, He Y, Wang Z H 2020 Acta Phys. Sin. 69 234207Google Scholar
[4] Moya F, Druet S A J, Taran J P E 1975 Opt. Commun. 13 169Google Scholar
[5] Roy S, Meyer T R, Lucht R P, Afzelius M, Bengtsson P E, Gord J R 2004 Opt. Lett. 29 1843Google Scholar
[6] Beyrau F, Bräuer A, Seeger T, Leipertz A 2004 Opt. Lett. 29 247Google Scholar
[7] Gord J R, Meyer T R, Roy S 2008 Annu. Rev. Anal. Chem. 1 663Google Scholar
[8] Roy S, Gord J R, Patnaik A K 2010 Prog. Energy Combus. Sci. 36 280Google Scholar
[9] Laubereau A, Kaiser W 1978 Rev. Mod. Phys. 50 607Google Scholar
[10] Kamga F M, Sceats M G 1980 Opt. Lett. 5 126Google Scholar
[11] Meyer T R, Roy S, Gord J R 2007 Appl. Spectrosc. 61 1135Google Scholar
[12] Seeger T, Kiefer J, Leipertz A, Patterson B, Kliewer C, Settersten T 2009 Opt. Lett. 34 3755Google Scholar
[13] Thomas S, Johannes K, Yi G, Patterson B D, Kliewer C J, Settersten T B 2010 Opt. Lett. 35 2040Google Scholar
[14] Beaud P, Frey H M, Lang T, Motzkus M 2001 Chem. Phys. Lett. 344 407Google Scholar
[15] Lucht R P, Roy S, Meyer T R, Gord J R 2006 Appl. Phys. Lett. 89 251112Google Scholar
[16] Wrzesinski P J, Stauffer H U, Kulatilaka W D, Gord J R, Roy S 2013 J. Raman Spectrosc. 44 1344Google Scholar
[17] Lang T, Motzkus M 2002 J. Opt. Soc. Am. B 19 340Google Scholar
[18] Roy S, Kulatilaka W D, Richardson D R, Lucht R P, Gord J R 2009 Opt. Lett. 34 3857Google Scholar
[19] Richardson D R, Stauffer H U, Roy S, Gord J R 2017 Appl. Opt. 56 E37Google Scholar
[20] Courtney T L, Bohlin A, Patterson B D, Kliewer C J 2017 J. Chem. Phys. 146 224202Google Scholar
[21] Yang C B, He P, Escofet-Martin D, Peng J B, Fan R W, Yu X, Dunn-Rankin D 2018 Appl. Opt. 57 197Google Scholar
[22] Zhao H, Tian Z, Wu T, Li Y, Wei H 2020 Appl. Phys. Lett. 116 111103Google Scholar
[23] Richardson D R, Kearney S P, Guildenbecher D R 2020 Appl. Opt. 59 8293Google Scholar
[24] Miller J D, Slipchenko M N, Meyer T R, Stauffer H U, Gord J R 2010 Opt. Lett. 35 2430Google Scholar
[25] Zhao H, Tian Z, Li Y, Wei H 2021 Opt. Lett. 46 1688Google Scholar
[26] Zhao H, Tian Z, Wu T, Li Y, Wei H 2021 Appl. Phys. Lett. 118 071107Google Scholar
[27] Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar
[28] Shirley J A, Hall R J, Eckbreth A C 1980 Opt. Lett. 5 380Google Scholar
[29] Chloe D 2017 Ph. D. Dissertation (Iowa: Iowa State University)
[30] Vestin F, Nilsson K, Bengtsson P E 2008 Appl. Opt. 47 1893Google Scholar
[31] Bertagnolli K E, Lucht R 1996 Symp. (Int.) Combust. 26 1825Google Scholar
[32] Kovac J D 1998 J. Chem. Edu. 75 545Google Scholar
[33] Miller J D 2012 Ph. D. Dissertation (Iowa: Iowa State University)
[34] Rahn L A, Palmer R E 1986 J. Opt. Soc. Am. B 3 1164Google Scholar
[35] Seeger T, Beyrau F, Bräuer A, Leipertz A 2003 J. Raman Spectrosc. 34 932Google Scholar
[36] Weigand P, Rainer L, Wolfgang M 2003 http://www.dlr.de/vt/datenarchiv
-
图 3 混合飞秒皮秒CARS光路系统图. BS1−BS3, 分光镜; M1−M15, 反射镜; G1−G3, 光栅; CL1和CL2, 柱面透镜; RM1和RM3, 凸面反射镜; RM2和RM4, 凹面反射镜; E1和E2, 直边; L1−L3, 透镜; OPA, 光学参量放大器; EMCCD, 电子倍增电荷耦合器件
Fig. 3. Diagram of hybrid femtosecond/picosecond CARS optical system. BS1−BS3, beam splitter; M1−M15, mirror; G1−G3, grating; CL1 and CL2, cylindrical lens; RM1 and RM3, concave rear mirror; RM2 and RM4, convex rear mirror; E1 and E2, edge; L1−L3, lens; OPA, optical parametric amplifier; EMCCD, electron multiplying charge coupled device.
表 1 4种流速配比及其对应参考温度[36]
Table 1. Four flow velocity ratios and their corresponding reference temperatures.
流速/(标准升·min–1) 参考温度/K 空气 甲烷 15.00 1.10 1706 30.30 2.55 1967 15.00 1.42 1799 36.18 3.42 2110 表 2 4个流速配比下测温的误差分析
Table 2. Error analysis of temperature measurement in four different flow velocity ratios.
时间段 参考温度/K 相对误差 相对标准偏差 0—8 s 1706 1.19% 1.75% 9—28.5 s 1967 0.53% 1.67% 28.9—48.8 s 1799 0.42% 1.42% 49—65.3 s 2110 0.21% 1.71% -
[1] 张步强, 许振宇, 刘建国, 等 2019 物理学报 68 233301Google Scholar
Zhang B Q, Xu Z Y, Liu J G, et al. 2019 Acta Phys. Sin. 68 233301Google Scholar
[2] 冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌 2012 物理学报 61 134702Google Scholar
Feng Y X, Huang Q X, Liang J H, Wang F, Yan J H, Chi Y 2012 Acta Phys. Sin. 61 134702Google Scholar
[3] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化 2020 物理学报 69 234207Google Scholar
Li S Y, Zhang D Y, Gao Q, Li B, He Y, Wang Z H 2020 Acta Phys. Sin. 69 234207Google Scholar
[4] Moya F, Druet S A J, Taran J P E 1975 Opt. Commun. 13 169Google Scholar
[5] Roy S, Meyer T R, Lucht R P, Afzelius M, Bengtsson P E, Gord J R 2004 Opt. Lett. 29 1843Google Scholar
[6] Beyrau F, Bräuer A, Seeger T, Leipertz A 2004 Opt. Lett. 29 247Google Scholar
[7] Gord J R, Meyer T R, Roy S 2008 Annu. Rev. Anal. Chem. 1 663Google Scholar
[8] Roy S, Gord J R, Patnaik A K 2010 Prog. Energy Combus. Sci. 36 280Google Scholar
[9] Laubereau A, Kaiser W 1978 Rev. Mod. Phys. 50 607Google Scholar
[10] Kamga F M, Sceats M G 1980 Opt. Lett. 5 126Google Scholar
[11] Meyer T R, Roy S, Gord J R 2007 Appl. Spectrosc. 61 1135Google Scholar
[12] Seeger T, Kiefer J, Leipertz A, Patterson B, Kliewer C, Settersten T 2009 Opt. Lett. 34 3755Google Scholar
[13] Thomas S, Johannes K, Yi G, Patterson B D, Kliewer C J, Settersten T B 2010 Opt. Lett. 35 2040Google Scholar
[14] Beaud P, Frey H M, Lang T, Motzkus M 2001 Chem. Phys. Lett. 344 407Google Scholar
[15] Lucht R P, Roy S, Meyer T R, Gord J R 2006 Appl. Phys. Lett. 89 251112Google Scholar
[16] Wrzesinski P J, Stauffer H U, Kulatilaka W D, Gord J R, Roy S 2013 J. Raman Spectrosc. 44 1344Google Scholar
[17] Lang T, Motzkus M 2002 J. Opt. Soc. Am. B 19 340Google Scholar
[18] Roy S, Kulatilaka W D, Richardson D R, Lucht R P, Gord J R 2009 Opt. Lett. 34 3857Google Scholar
[19] Richardson D R, Stauffer H U, Roy S, Gord J R 2017 Appl. Opt. 56 E37Google Scholar
[20] Courtney T L, Bohlin A, Patterson B D, Kliewer C J 2017 J. Chem. Phys. 146 224202Google Scholar
[21] Yang C B, He P, Escofet-Martin D, Peng J B, Fan R W, Yu X, Dunn-Rankin D 2018 Appl. Opt. 57 197Google Scholar
[22] Zhao H, Tian Z, Wu T, Li Y, Wei H 2020 Appl. Phys. Lett. 116 111103Google Scholar
[23] Richardson D R, Kearney S P, Guildenbecher D R 2020 Appl. Opt. 59 8293Google Scholar
[24] Miller J D, Slipchenko M N, Meyer T R, Stauffer H U, Gord J R 2010 Opt. Lett. 35 2430Google Scholar
[25] Zhao H, Tian Z, Li Y, Wei H 2021 Opt. Lett. 46 1688Google Scholar
[26] Zhao H, Tian Z, Wu T, Li Y, Wei H 2021 Appl. Phys. Lett. 118 071107Google Scholar
[27] Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar
[28] Shirley J A, Hall R J, Eckbreth A C 1980 Opt. Lett. 5 380Google Scholar
[29] Chloe D 2017 Ph. D. Dissertation (Iowa: Iowa State University)
[30] Vestin F, Nilsson K, Bengtsson P E 2008 Appl. Opt. 47 1893Google Scholar
[31] Bertagnolli K E, Lucht R 1996 Symp. (Int.) Combust. 26 1825Google Scholar
[32] Kovac J D 1998 J. Chem. Edu. 75 545Google Scholar
[33] Miller J D 2012 Ph. D. Dissertation (Iowa: Iowa State University)
[34] Rahn L A, Palmer R E 1986 J. Opt. Soc. Am. B 3 1164Google Scholar
[35] Seeger T, Beyrau F, Bräuer A, Leipertz A 2003 J. Raman Spectrosc. 34 932Google Scholar
[36] Weigand P, Rainer L, Wolfgang M 2003 http://www.dlr.de/vt/datenarchiv
计量
- 文章访问数: 5941
- PDF下载量: 144
- 被引次数: 0