搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响

王亚楠 任林渊 丁卫东 孙安邦 耿金越

引用本文:
Citation:

腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响

王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越

Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster

Wang Ya-Nan, Ren Lin-Yuan, Ding Wei-Dong, Sun An-Bang, Geng Jin-Yue
PDF
HTML
导出引用
  • 毛细管放电型脉冲等离子体推力器在微纳卫星在轨机动应用中具备良好的发展前景. 本文系统研究了单次放电能量5 J条件下, 不同毛细管腔体尺寸参数对推力器能量沉积特性、烧蚀特性、输出推力参数和等离子体羽流参数的影响规律. 实验结果表明, 增大毛细管腔体内径会显著降低放电电流密度, 减小沉积能量和等效功率; 增大腔体长度有助于提升能量传递效率. 腔体结构尺寸变化影响单位面积沉积能量和管壁温度, 进而改变烧蚀特性. 当毛细管内径从1 mm增加至3 mm时烧蚀质量显著下降, 随着腔体内径的进一步增大, 等效烧蚀质量近似不变; 烧蚀质量随毛细管长度的增加持续增大, 但单位面积烧蚀质量不断下降. 推力器元冲量取决于烧蚀质量与其等效速度, 烧蚀特性的差异进一步影响腔体内等离子体密度和等效压强, 影响等离子体电热加速过程. 毛细管腔体内径和长度的不断增加, 使得加速过程滞后于放电和烧蚀过程, 作用于加速过程的电弧沉积能量比例降低, 降低推力器等离子体喷射速度, 元冲量减小, 比冲降低, 总体效率下降. 结合总体效率传递模型分析, 毛细管内径对推力器效率的影响主要体现在能量传递效率方面, 毛细管长度变化主要影响等离子体电热加速效率, 优化推力器总体效率需要从能量沉积效率和加速效率两方面入手.
    Capillary discharge based pulsed plasma thrusters have great prospects of applications in in-orbit maneuvering of micro-nano satellites. In this paper, the influence of different capillary cavity structure parameters on the thruster's energy deposition process, ablation characteristics, output thrust parameters and plasma plume parameters under an energy level of 5 J were studied. The experimental results indicate that the increase of the inner diameter of the capillary cavity will significantly reduce the discharge current density, which leads the deposition energy and equivalent power to decrease; the increase of the cavity length helps to improve the energy transfer efficiency. The influence of cavity structure on the ablation characteristics is reflected in the influence of deposition energy per unit area on the tube wall temperature. When the inner diameter of the capillary increases from 1 mm to 3 mm, the ablation mass decreases significantly, and then the equivalent ablation mass remains approximately unchanged as the inner diameter of the cavity increases further; the ablation mass continues to increase as the capillary length increases, while the ablation mass per unit area continues to decrease. The impulse bit depends on the ablation mass and plasma plume velocity, and the difference in ablation characteristic further affects the plasma in the cavity. The density and equivalent pressure determine the plasma electrothermal acceleration process. The continuous increase in the diameter and length of the capillary cavity will induce the acceleration process to lag behind the discharge and ablation process. And the decrease of the deposited energy impedes the electrothermal acceleration process, which results in the decrease of the impulse bit, specific impulse, and the overall efficiency. Furthermore, the overall efficiency transfer model analysis indicates the influence of the capillary inner diameter on thruster efficiency is mainly reflected in the energy transfer efficiency, and the capillary length change mainly affects the electrothermal acceleration efficiency. The overall efficiency optimization of the thruster needs to start from increasing both energy deposition efficiency and acceleration efficiency.
      通信作者: 王亚楠, yn.wang_ee@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:52007147)、中国博士后科学基金(批准号:2020M683480)和北京控制工程研究所先进空间推进技术实验室和北京市高效能及绿色宇航推进工程技术研究中心开放基金(批准号:LabASP2020-07)资助的课题.
      Corresponding author: Wang Ya-Nan, yn.wang_ee@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52007147), the China Postdoctoral Science Foundation (Grant No. 2020M683480), and the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology, China (Grant No. LabASP2020-07).
    [1]

    Levchenko I, Keidar M, Cantrell J, Wu Y L, Kuninaka H, Bazaka K, Xu S Y 2018 Nature 562 185Google Scholar

    [2]

    马定坤, 匡银, 杨新权 2017 空间电子技术 14 42Google Scholar

    Ma D K, Kuang Y, Yang X Q 2017 Space Electron. Technol. 14 42Google Scholar

    [3]

    Esper J, Neeck S, Slavin J A, Wiscombe W, Bauer F H 2003 Acta Astronaut 52 785Google Scholar

    [4]

    于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propul. Technol. 41 1

    [5]

    Levchenko I, Bazaka K, Ding Y J, Ratses Y, Mazouffe S, Henning T J, Klar P, Shinahara S, Schein J, Garrigues L, Kim M, Lev D, Taccogna F, Boswell R W, Charles C, Koizumi H, Shen Y, Scharlemann C, Keidar M, Xu S Y 2018 Appl. Phys. Rev. 5 11104Google Scholar

    [6]

    Wright W P, Ferrer P 2015 Prog. Aerosp. Sci. 74 48Google Scholar

    [7]

    Molina-Cabrera P, Herdrich G, Lau M, Fausolas S, Schoenherr T, Komurasaki K 2011 Proceedings of 32nd International Electric Propulsion Conference (IEPC), Wiesbaden, Germany, September 11−15, 2011 pp1−18

    [8]

    王亚楠, 丁卫东, 程乐, 李悦, 孙安邦 2018 电工技术学报 33 218

    Wang Y N, Ding W D, Cheng L, Li Y, Sun A B 2018 Trans. Chin. Electrotech. Soc. 33 218

    [9]

    Ozaki J, Ikeda T, Fujiwara T, Nishizawa M, Araki S, Tahara H, Watanabe Y 2011 The 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11−15, 2011 IEPC-2011-035

    [10]

    Keidar M, Boyd I D, Beilis I I 2001 J. Phys D: Appl. Phys. 34 1675Google Scholar

    [11]

    Zaghloul M R 2004 J. Appl. Phys. 95 3339Google Scholar

    [12]

    Schonherr T, Nees F, Arakawa Y, Komurasaki K, Herdrich G 2013 Phys. Plasma 20 033503Google Scholar

    [13]

    Wang W Z, Kong L H, Geng J Y, Wei F, Xia G Q 2017 J. Phys. D: Appl. Phys. 50 074005Google Scholar

    [14]

    Edamitsu T, Tahara H 2005 The 29th International Electric Propulsion Conference, Princeton, USA, October 31–November 4, 2005 IEPC 2005−105

    [15]

    Aoyagi J, Mukai M, Kamishima Y, Sasaki T, Shintani K, Takegahara H, Wakizono T, Sugiki M 2008 Vacuum 83 72Google Scholar

    [16]

    Hiroki T, Hirokazu T 2009 The 31st International Electric Propulsion Conference, Michigan, USA, September 20−24, 2009 IEPC-2009-154

    [17]

    Matthias L, Georg H, Stefanos F, Roser H P 2011 The 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11−15, 2011 IEPC-2011-140

    [18]

    Wang Y N, Ding W D, Cheng L, Yan J Q, Wang J C, and Wang Y S 2017 IEEE Trans. Plasma Sci. 45 2715Google Scholar

    [19]

    孔策 2013 等离子体光谱学导论 (北京: 北京大学出版社)

    Kunze H J 2013 Introduction to Plasma Spectroscopy (Beijing: Peking University Press) (in Chinese)

    [20]

    Spores 1997 The 33rd Joint Propulsion Conference and Exhibit: Seattle, W. A., USA, July 6−9, 1997 2922

    [21]

    Griem H R 1964 Plasma Spectroscopy (Cambriadge: Cambriadge University Press)

    [22]

    Tie W, Zhang Y, Meng C, Zhang Q G, Yan Z, He P 2018 Plasma Sources Sci. Technol. 27 015005

    [23]

    Wang Y, Ding W, Cheng L, Li Y, Ge C J, Han R Y, Yan J Q, Zhao Z, Sun A B 2018 Rev. Sci. Instrum. 89 075104Google Scholar

    [24]

    Wang Y N, Ge C J, Cheng L, Ding W D, Geng J Y 2019 Rev. Sci. Instrum. 90 076111Google Scholar

    [25]

    李瑞 2012 博士学位论文(西安: 西安交通大学)

    Li R 2012 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese)

    [26]

    Bushman S S, Burton R L 2011 J. Propul. Power 17 959

    [27]

    Pekker L 2009 J. Propul. Power 25 958Google Scholar

    [28]

    Liao H T, Wu M L, Wang N H 1999 J. Propul. Technol. 20 107

    [29]

    Branch M C, Sawyer R F 1969 The 5th Propulsion Joint Specialist, Colorado Springs, CO, USA, June13−17, 1969 p469

  • 图 1  毛细管推力器结构示意图

    Fig. 1.  The schematic of CDPPT structure.

    图 2  实验平台 (a) 实物图; (b) 示意图; (c) 微推力测量扭摆

    Fig. 2.  Experimental platform: (a) Photo; (b) schematic diagram of the system; (c) thrust balance.

    图 3  推力器放电等效电路及能量传递路径

    Fig. 3.  The equivalent circuit of CDPPT discharge circuit and energy transfer path.

    图 4  不同内径下 (a) 电压波形; (b) 电流波形; (c) 阻性功率; (d) 沉积能量

    Fig. 4.  The discharge characteristics of CDPPT with different cavity diameter: (a) Voltage waveform; (b) current waveform; (c) arc resistance power; (d) deposited energy.

    图 5  不同内径下沉积能量及沉积能量效率

    Fig. 5.  The deposited energy and efficiency of CDPPT with different cavity diameter.

    图 6  不同长度下 (a) 电压波形; (b) 电流波形; (c) 阻性功率; (d)沉积能量

    Fig. 6.  The discharge characteristics of CDPPT with different cavity length: (a) Voltage waveform; (b) current waveform; (c) arc resistance power; (d) deposited energy.

    图 7  不同内径下沉积能量及沉积能量效率

    Fig. 7.  The deposited energy and efficiency of CDPPT with different cavity length.

    图 8  烧蚀质量与单位面积烧蚀质量 (a) 不同内径; (b) 不同长度

    Fig. 8.  The ablation mass per shot and ablation mass per unit surface of CDPPT: (a) With different cavity diameter; (b) with different cavity length.

    图 9  不同内径下(a) 元冲量, (b) 比冲与效率; 不同长度下 (c) 元冲量, (d) 比冲与效率

    Fig. 9.  The impulse bit (a), specific impulse and efficiency (b) of CDPPT with different cavity length; impulse bit (c), specific impulse and efficiency (d) of CDPPT with different cavity diameter.

    图 10  不同内径下羽流等离子体 (a) 等离子体温度; (b) 等离子体密度

    Fig. 10.  Theplasma temperature (a) and plasma density (b) of CDPPT plasma plume with different cavity diameter.

    图 11  不同长度下羽流等离子体 (a) 等离子体温度; (b) 等离子体密度

    Fig. 11.  The plasma temperature (a) and plasma density (b) of CDPPT plasma plume with different cavity length.

    图 12  推力器能量效率 (a) 不同长度; (b) 不同内径

    Fig. 12.  The CDPPT thrust efficiency and transfer efficiency with different (a) cavity length and (b) different cavity diameter.

    表 1  毛细管推力器工作参数与结构参数

    Table 1.  Operation parameters and structural parameters of CDPPT.

    参数取值
    主电容容值 C0/μF2.5
    充电电压 U0/kV2
    毛细管长度 l0/mm14, 16, 18, 20, 25, 30, 35, 40
    毛细管内径 R0/mm1, 3, 5, 7, 9
    下载: 导出CSV

    表 2  不同容值下等效放电回路参数

    Table 2.  Equivalent circuit parameters of CDPPT with different capacitance.

    主电容值/μF0.51.01.52.02.5
    Lc + L0/nH97.1389.0286.3284.9784.16
    下载: 导出CSV

    表 3  不同内径下等效放电回路参数

    Table 3.  Equivalent circuit parameters of CDPPT with different cavity diameter.

    毛细管内径/mm初始储能/J主电流幅值/A弧道电阻/mΩ弧道电感/nH
    15.062379 ± 38.20703.10 ± 15.4349.98 ± 2.38
    35.006116 ± 8.94143.70 ± 0.5335.50 ± 3.08
    55.18 ± 0.017568 ± 17.8958.72 ± 0.1328.19 ± 1.92
    75.05 ± 0.018148 ± 26.8349.74 ± 0.7027.75 ± 2.05
    95.08 ± 0.01840039.38 ± 0.1821.53 ± 2.94
    下载: 导出CSV

    表 4  不同长度下等效放电回路参数

    Table 4.  Equivalent circuit parameters of CDPPT with different cavity length.

    毛细管长度/mm初始储能/J主电流幅值/A弧道电阻/mΩ弧道电感/nH
    145.16 ± 0.017944 ± 35.7853.00 ± 0.0714.14 ± 0.46
    165.11 ± 0.03764056.47 ± 0.3619.36 ± 1.69
    185.07 ± 0.017544 ± 35.7866.20 ± 0.4522.25 ± 2.12
    205.16 ± 0.067256 ± 35.7877.56 ± 0.4022.32 ± 0.22
    255.056872 ± 43.8290.66 ± 0.8122.74 ± 3.12
    305.096436 ± 21.91107.34 ± 0.1925.67 ± 2.12
    355.17 ± 0.016004 ± 21.91129.86 ± 0.3434.27 ± 2.84
    405.10 ± 0.085684 ± 21.91148.86 ± 0.7336.24 ± 1.89
    下载: 导出CSV
  • [1]

    Levchenko I, Keidar M, Cantrell J, Wu Y L, Kuninaka H, Bazaka K, Xu S Y 2018 Nature 562 185Google Scholar

    [2]

    马定坤, 匡银, 杨新权 2017 空间电子技术 14 42Google Scholar

    Ma D K, Kuang Y, Yang X Q 2017 Space Electron. Technol. 14 42Google Scholar

    [3]

    Esper J, Neeck S, Slavin J A, Wiscombe W, Bauer F H 2003 Acta Astronaut 52 785Google Scholar

    [4]

    于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propul. Technol. 41 1

    [5]

    Levchenko I, Bazaka K, Ding Y J, Ratses Y, Mazouffe S, Henning T J, Klar P, Shinahara S, Schein J, Garrigues L, Kim M, Lev D, Taccogna F, Boswell R W, Charles C, Koizumi H, Shen Y, Scharlemann C, Keidar M, Xu S Y 2018 Appl. Phys. Rev. 5 11104Google Scholar

    [6]

    Wright W P, Ferrer P 2015 Prog. Aerosp. Sci. 74 48Google Scholar

    [7]

    Molina-Cabrera P, Herdrich G, Lau M, Fausolas S, Schoenherr T, Komurasaki K 2011 Proceedings of 32nd International Electric Propulsion Conference (IEPC), Wiesbaden, Germany, September 11−15, 2011 pp1−18

    [8]

    王亚楠, 丁卫东, 程乐, 李悦, 孙安邦 2018 电工技术学报 33 218

    Wang Y N, Ding W D, Cheng L, Li Y, Sun A B 2018 Trans. Chin. Electrotech. Soc. 33 218

    [9]

    Ozaki J, Ikeda T, Fujiwara T, Nishizawa M, Araki S, Tahara H, Watanabe Y 2011 The 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11−15, 2011 IEPC-2011-035

    [10]

    Keidar M, Boyd I D, Beilis I I 2001 J. Phys D: Appl. Phys. 34 1675Google Scholar

    [11]

    Zaghloul M R 2004 J. Appl. Phys. 95 3339Google Scholar

    [12]

    Schonherr T, Nees F, Arakawa Y, Komurasaki K, Herdrich G 2013 Phys. Plasma 20 033503Google Scholar

    [13]

    Wang W Z, Kong L H, Geng J Y, Wei F, Xia G Q 2017 J. Phys. D: Appl. Phys. 50 074005Google Scholar

    [14]

    Edamitsu T, Tahara H 2005 The 29th International Electric Propulsion Conference, Princeton, USA, October 31–November 4, 2005 IEPC 2005−105

    [15]

    Aoyagi J, Mukai M, Kamishima Y, Sasaki T, Shintani K, Takegahara H, Wakizono T, Sugiki M 2008 Vacuum 83 72Google Scholar

    [16]

    Hiroki T, Hirokazu T 2009 The 31st International Electric Propulsion Conference, Michigan, USA, September 20−24, 2009 IEPC-2009-154

    [17]

    Matthias L, Georg H, Stefanos F, Roser H P 2011 The 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11−15, 2011 IEPC-2011-140

    [18]

    Wang Y N, Ding W D, Cheng L, Yan J Q, Wang J C, and Wang Y S 2017 IEEE Trans. Plasma Sci. 45 2715Google Scholar

    [19]

    孔策 2013 等离子体光谱学导论 (北京: 北京大学出版社)

    Kunze H J 2013 Introduction to Plasma Spectroscopy (Beijing: Peking University Press) (in Chinese)

    [20]

    Spores 1997 The 33rd Joint Propulsion Conference and Exhibit: Seattle, W. A., USA, July 6−9, 1997 2922

    [21]

    Griem H R 1964 Plasma Spectroscopy (Cambriadge: Cambriadge University Press)

    [22]

    Tie W, Zhang Y, Meng C, Zhang Q G, Yan Z, He P 2018 Plasma Sources Sci. Technol. 27 015005

    [23]

    Wang Y, Ding W, Cheng L, Li Y, Ge C J, Han R Y, Yan J Q, Zhao Z, Sun A B 2018 Rev. Sci. Instrum. 89 075104Google Scholar

    [24]

    Wang Y N, Ge C J, Cheng L, Ding W D, Geng J Y 2019 Rev. Sci. Instrum. 90 076111Google Scholar

    [25]

    李瑞 2012 博士学位论文(西安: 西安交通大学)

    Li R 2012 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese)

    [26]

    Bushman S S, Burton R L 2011 J. Propul. Power 17 959

    [27]

    Pekker L 2009 J. Propul. Power 25 958Google Scholar

    [28]

    Liao H T, Wu M L, Wang N H 1999 J. Propul. Technol. 20 107

    [29]

    Branch M C, Sawyer R F 1969 The 5th Propulsion Joint Specialist, Colorado Springs, CO, USA, June13−17, 1969 p469

  • [1] 杨楠楠, 王尚民, 张家良, 温小琼, 赵凯. 改进型机-电模型及脉冲等离子体推力器能量转化效率分析. 物理学报, 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [2] 张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健. 预填充模式下同轴枪放电等离子体加速模型分析与优化. 物理学报, 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [3] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究. 物理学报, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比. 物理学报, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [5] 刘涛, 赵永蓬, 崔怀愈, 刘晓琳. 基于双程放大的毛细管放电69.8 nm激光增益特性. 物理学报, 2019, 68(2): 025201. doi: 10.7498/aps.68.20181617
    [6] 焦蛟, 童继生, 马春光, 郭佶玙, 薄勇, 赵青. 电磁波在高密度等离子体微柱腔体结构中的新传输模式. 物理学报, 2018, 67(1): 015202. doi: 10.7498/aps.67.20171728
    [7] 成玉国, 夏广庆. 感应式脉冲推力器中等离子体加速数值研究. 物理学报, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [8] 刘涛, 赵永蓬, 丁宇洁, 李小强, 崔怀愈, 姜杉. 毛细管放电类氖氩69.8 nm激光增益特性研究. 物理学报, 2017, 66(15): 155201. doi: 10.7498/aps.66.155201
    [9] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [10] 车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引. 亚微秒脉冲表面介质阻挡放电等离子体诱导连续漩涡的研究. 物理学报, 2013, 62(22): 224702. doi: 10.7498/aps.62.224702
    [11] 赵永蓬, 徐强, 肖德龙, 丁宁, 谢耀, 李琦, 王骐. Xe介质极紫外光源时间特性及最佳条件研究. 物理学报, 2013, 62(24): 245204. doi: 10.7498/aps.62.245204
    [12] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型. 物理学报, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [13] 张锐, 张代贤, 张帆, 何振, 吴建军. 脉冲等离子体推力器羽流沉积薄膜的结构与光学性质研究. 物理学报, 2013, 62(2): 025207. doi: 10.7498/aps.62.025207
    [14] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性. 物理学报, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [15] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [16] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [17] 孙 姣, 张家良, 王德真, 马腾才. 一种新型大气压毛细管介质阻挡放电冷等离子体射流技术. 物理学报, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [18] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间. 物理学报, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [19] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [20] 陈 钢, 潘佰良, 姚志欣. 气体脉冲放电等离子体阻抗的参量研究. 物理学报, 2003, 52(7): 1635-1639. doi: 10.7498/aps.52.1635
计量
  • 文章访问数:  5011
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-07-26
  • 上网日期:  2021-08-20
  • 刊出日期:  2021-12-05

/

返回文章
返回