搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同外加磁场中Kaplan-Shekhtman-Entin-Wohlman-Aharony相互作用对量子失协非马尔科夫演化的影响

张金峰 阿拉帕提·阿不力米提 杨帆 艾克拜尔·阿木提江 唐诗生 艾合买提·阿不力孜

引用本文:
Citation:

不同外加磁场中Kaplan-Shekhtman-Entin-Wohlman-Aharony相互作用对量子失协非马尔科夫演化的影响

张金峰, 阿拉帕提·阿不力米提, 杨帆, 艾克拜尔·阿木提江, 唐诗生, 艾合买提·阿不力孜

Effects of Kaplan-Shekhtman-Entin-Wohlman-Aharony interaction on quantum discord of non-markovian dynamics under different magnetic fields

Zhang Jin-Feng, Arapat Ablimit, Yang Fan, Akbar Hamutjan, Tang Shi-Sheng, Ahmad Abliz
PDF
HTML
导出引用
  • 自从Moriya和Kaplan在自旋轨道耦合的单带哈伯德模型中发现了对称的螺旋交换作用, Shekhtman, Entin和Aharony等用这种不可忽略的对称螺旋交换作用成功地解释了$ {\text{L}}{{\text{a}}_{\text{2}}}{\text{Cu}}{{\text{O}}_{\text{4}}} $的弱铁磁性. 本文应用非马尔科夫量子态扩散方法研究了具有Kaplan-Shekhtman-Entin-Wohlman-Aharony相互作用和Dzyaloshinskii-Moriya相互作用的自旋链系统中量子失协的非马尔科夫动力学演化问题, 分析了Kaplan-Shekhtman-Entin-Wohlman-Aharony相互作用在零温和有限温度下不同外加磁场时对量子失协的影响. 结果表明, 在没有磁场或仅有均匀磁场的情况下, 系统中的量子失协可以通过增加Kaplan-Shekhtman-Entin-Wohlman-Aharony相互作用而增加, 而在非均匀磁场中则相反. 更重要的是, 通过调节均匀磁场和Kaplan-Shekhtman-Entin-Wohlman-Aharony相互作用可以得到理想的失协状态. 此外, 还分别讨论了Kaplan-Shekhtman-Entin-Wohlman-Aharony相互作用在马尔科夫环境和有限温度下对量子失协的影响.
    Since the discovery of symmetric helical interactions in the spin-orbit coupled single-band Hubbard model by Moriya and Kaplan, Shekhtman, Entin, Aharony et al. have successfully used this non-negligible symmetric helical exchange interaction to explain the weak ferromagnetism of La2CuO4. By using the non-Markovian quantum state diffusion method, the quantum discord of non-Markovian dynamics in the spin chain system that has Kaplan–Shekhtman–Entin-Wohlman–Aharony interactions and Dzyaloshinskii-Moriya interactions is studied. The effects of Kaplan–Shekhtman–Entin-Wohlman–Aharony interaction on the quantum discord under different external magnetic fields at zero and finite temperatures are discussed. The results show that the quantum discord in the system can be increased via the increasing of Kaplan–Shekhtman–Entin-Wohlman–Aharony interaction in the case of zero or uniform magnetic field, while the case is opposite under the nonuniform magnetic field. More importantly, the ideal discord state can be obtained by modulating the uniform magnetic field and Kaplan–Shekhtman–Entin-Wohlman–Aharony interaction. Moreover, the Markovian case and the effect of temperature on the quantum discord are also discussed, respectively.
      通信作者: 艾合买提·阿不力孜, aahmad@126.com
    • 基金项目: 国家自然科学基金地区科学基金(批准号: 11864042)资助的课题.
      Corresponding author: Ahmad Abliz, aahmad@126.com
    • Funds: Project supported by the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant No. 11864042).
    [1]

    Huang Y 2014 Phys. Rev. B 89 54410Google Scholar

    [2]

    Dakić B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner Č, Walther P 2012 Nat. Phys. 8 666Google Scholar

    [3]

    Shahandeh F, Lund A P, Ralph T C 2019 Phys. Rev. A 99 052303Google Scholar

    [4]

    Ringbauer M, Costa F, Goggin M E, Andrew G W, Fedrizzi A 2018 NPJ Quantum Inf. 4 1Google Scholar

    [5]

    Ecker S, Bouchard F, Bulla L, Brandt F, Kohout O, Steinlechner F, Fickler R, Malik M, Guryanova Y, Ursin R, Huber M 2019 Phys. Rev. X 9 041042Google Scholar

    [6]

    Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W, Pirandola S 2018 Rev. Mod. Phys. 90 035006Google Scholar

    [7]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [8]

    Mamtimin T, Ahmad A, Rabigul M 2013 Chin. Phys. Lett. 30 030303Google Scholar

    [9]

    Harold O, Zurek W H 2002 Phys. Rev. Lett. 88 017901Google Scholar

    [10]

    Ali M, Rau A, Alber G. 2010 Phys. Rev. A 81 82Google Scholar

    [11]

    Fanchini F F, Werlang T, Brasil C A 2010 Phys. Rev. A 81 52107Google Scholar

    [12]

    Daki B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger V, Brukner Č 2012 Nature Physics 8 666

    [13]

    Seri A, Lenhard A, Rieländer D, Gündoǧan M, Ledingham P M, Mazzera M, Riedmatten H D 2017 Phys. Rev. X 7 021028Google Scholar

    [14]

    Burkard G, Loss D, Divincenzo D P 1999 Phys. Rev. B 59 2070Google Scholar

    [15]

    Vrijen R, Yablonovitch E, Wang K, Hong W J, Balandin A, Roychowdhury V, Mor T, Vincenzo D D 2000 Phys. Rev. A 62 12306Google Scholar

    [16]

    Kane B E 1998 Nature 393 133Google Scholar

    [17]

    Pourkarimi M R 2018 Int. J. Theor. Phys. 57 1158Google Scholar

    [18]

    Sun Y, Ma X, Guo J 2020 Quantum Inf. Process. 19 1Google Scholar

    [19]

    Moriya T 1960 Phys. Rev. Lett. 4 228Google Scholar

    [20]

    Kaplan T A 1983 Z. Phys. B:Condens. Matter 49 313Google Scholar

    [21]

    Shekhtman L, Wohlman E, Aharony A 1992 Phys. Rev. Lett. 69 836Google Scholar

    [22]

    Shekhtman L, Aharony A, Wohlman O E 1993 Phys. Rev. B 47 174Google Scholar

    [23]

    Tsukada I, Takeya J, Masuda T, Uchinokura K 2000 Phys. Rev. B 62 R6061Google Scholar

    [24]

    Zheludev A, Maslov S, Shirane G, Tsukada I, Uchinokura K, Zaliznyak I, Erwin I, Regnault L P 1999 Phys. Rev. B 59 11432Google Scholar

    [25]

    Zheludev A, Maslov S, Tsukada I, Zaliznyak I, Regnault L P, Masuda T, Uchinokura K, Erwin R, Shirane G 1998 Phys. Rev. Lett. 81 5410Google Scholar

    [26]

    Yurischev M A 2020 Quantum Information Processing 19 1

    [27]

    Rabboul A, Khalil E M, Khalek S A, Barataky A A, Zinadah H A 2021 IEEE Access 9 51325Google Scholar

    [28]

    Liu T, Ren J, Tong P Q 2018 Phys. Rev. B 98 184426Google Scholar

    [29]

    Diósi L, Gisin N, Strunz W T 1998 Phys. Rev. A 58 1699Google Scholar

    [30]

    Li P B, Zhou Y, Gao W B, Nori F 2020 Phys. Rev. Lett. 125 153602Google Scholar

    [31]

    Hosokawa K, Shiokawa K, Otsuka Y, Nakajima A, Ogawa T, Kelly J D 2006 Geophys. Res. Lett. 33 L15111Google Scholar

    [32]

    Zhao X Y 2014 Ph. D. Dissertation (Hoboken: Stevens Institute of Technology)

    [33]

    Yu T 2004 Phys. Rev. A 69 062107Google Scholar

  • 图 1  (a)量子失协随KSEA相互作用和时间的演化特性; (b) KSEA相互作用在$\omega t = 5$时对量子失协的影响. 其他参数${J_x} = 0.2,~ {J_y} = 0.5,~ {J_z} = 0.9, ~\gamma = 0.1,~ {B_z} = 0,~ {b_z} = 0$, ${D_z} = 0.2,~T = 0$

    Fig. 1.  (a) Dynamics of quantum discord with KSEA interactions and time; (b) effect of KSEA interaction on quantum discord at$\omega t = 5$. The other parameters are${J_x} = 0.2,~ {J_y} = 0.5,~ {J_z} = 0.9,~ \gamma = 0.1,~ {B_z} = 0, {b_z} = 0$, ${D_z} = $$ 0.2, T = 0$.

    图 2  KSEA相互作用在不同磁场环境下对量子失协的影响 (a)不加磁场${B_{{z}}} = 0,~ {b_z} = 0$; (b)均匀磁场${B_{ {z}}} = 1, $$ {b_z} = 0$; (c)非均匀磁场${B_{ {z}}} = 1, ~{b_z} = 3$. 其他参数${J_x} = 0.2, $$ {J_y} = 0.5,~ {J_z} = 0.9$, $\gamma = 0.1,~ {D_z} = 0.2, ~T = 0$

    Fig. 2.  Effects of KSEA interactions on the dynamics of the quantum discord in different magnetic field environment: (a) No magnetic field added${B_{\text{z}}} = 0,~ {b_z} = 0$; (b) uniform magnetic field${B_{\text{z}}} = 1,~ {b_z} = 0$; (c) non-uniform magnetic field${B_{\text{z}}} = 1, {b_z} = 3$. The other parameters are${J_x} = 0.2, $$ {J_y} = 0.5,~ {J_z} = 0.9$, $\gamma = 0.1,~{D_z} = 0.2,~ T = 0$.

    图 3  马尔科夫环境下均匀磁场中KSEA相互作用对量子失协的影响. 其他参数${J_x} = 0.2,\; {J_y} = 0.5,\; {J_z} = 0.9$, $\gamma = $$ 3, \; {B_z} = 2,\; {b_z} = 0, \;{D_z} = 0.2,\; T = 0$.

    Fig. 3.  Effects of KSEA interactions on quantum discord in a uniform magnetic field in Markovian environment. The other parameters are ${J_x} = 0.2, \;{J_y} = 0.5,\; {J_z} = 0.9,\; \gamma = 3$, ${B_z} = 2,\; {b_z} = 0,\; {D_z} = 0.2, \;T = 0$.

    图 4  (a)量子失协随时间和温度的演化特性; (b)温度在$\omega t = 5$时对量子失协的影响. 其他参数${J_x} = 0.2, \;{J_y} = 0.5, $$ {J_z} = 0.9$, $\gamma = 0.1,\; {B_z} = 1,\; {b_z} = 0,\; {D_z} = 0.2,\; {\varGamma _z} = 2$

    Fig. 4.  (a) Dynamics of quantum discord with time t and temperature $T$; (b) effect of temperature $T$ on quantum discord at$\omega t = 5$. The other parameters are ${J_x} = 0.2, \, {J_y} = $$ 0.5, \,{J_z} = 0.9,\,\gamma = 0.1, \,{B_z} = 1, \,{b_z} = 0, \,{D_z} = 0.2$, ${\varGamma _z} = 2$

  • [1]

    Huang Y 2014 Phys. Rev. B 89 54410Google Scholar

    [2]

    Dakić B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner Č, Walther P 2012 Nat. Phys. 8 666Google Scholar

    [3]

    Shahandeh F, Lund A P, Ralph T C 2019 Phys. Rev. A 99 052303Google Scholar

    [4]

    Ringbauer M, Costa F, Goggin M E, Andrew G W, Fedrizzi A 2018 NPJ Quantum Inf. 4 1Google Scholar

    [5]

    Ecker S, Bouchard F, Bulla L, Brandt F, Kohout O, Steinlechner F, Fickler R, Malik M, Guryanova Y, Ursin R, Huber M 2019 Phys. Rev. X 9 041042Google Scholar

    [6]

    Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W, Pirandola S 2018 Rev. Mod. Phys. 90 035006Google Scholar

    [7]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [8]

    Mamtimin T, Ahmad A, Rabigul M 2013 Chin. Phys. Lett. 30 030303Google Scholar

    [9]

    Harold O, Zurek W H 2002 Phys. Rev. Lett. 88 017901Google Scholar

    [10]

    Ali M, Rau A, Alber G. 2010 Phys. Rev. A 81 82Google Scholar

    [11]

    Fanchini F F, Werlang T, Brasil C A 2010 Phys. Rev. A 81 52107Google Scholar

    [12]

    Daki B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger V, Brukner Č 2012 Nature Physics 8 666

    [13]

    Seri A, Lenhard A, Rieländer D, Gündoǧan M, Ledingham P M, Mazzera M, Riedmatten H D 2017 Phys. Rev. X 7 021028Google Scholar

    [14]

    Burkard G, Loss D, Divincenzo D P 1999 Phys. Rev. B 59 2070Google Scholar

    [15]

    Vrijen R, Yablonovitch E, Wang K, Hong W J, Balandin A, Roychowdhury V, Mor T, Vincenzo D D 2000 Phys. Rev. A 62 12306Google Scholar

    [16]

    Kane B E 1998 Nature 393 133Google Scholar

    [17]

    Pourkarimi M R 2018 Int. J. Theor. Phys. 57 1158Google Scholar

    [18]

    Sun Y, Ma X, Guo J 2020 Quantum Inf. Process. 19 1Google Scholar

    [19]

    Moriya T 1960 Phys. Rev. Lett. 4 228Google Scholar

    [20]

    Kaplan T A 1983 Z. Phys. B:Condens. Matter 49 313Google Scholar

    [21]

    Shekhtman L, Wohlman E, Aharony A 1992 Phys. Rev. Lett. 69 836Google Scholar

    [22]

    Shekhtman L, Aharony A, Wohlman O E 1993 Phys. Rev. B 47 174Google Scholar

    [23]

    Tsukada I, Takeya J, Masuda T, Uchinokura K 2000 Phys. Rev. B 62 R6061Google Scholar

    [24]

    Zheludev A, Maslov S, Shirane G, Tsukada I, Uchinokura K, Zaliznyak I, Erwin I, Regnault L P 1999 Phys. Rev. B 59 11432Google Scholar

    [25]

    Zheludev A, Maslov S, Tsukada I, Zaliznyak I, Regnault L P, Masuda T, Uchinokura K, Erwin R, Shirane G 1998 Phys. Rev. Lett. 81 5410Google Scholar

    [26]

    Yurischev M A 2020 Quantum Information Processing 19 1

    [27]

    Rabboul A, Khalil E M, Khalek S A, Barataky A A, Zinadah H A 2021 IEEE Access 9 51325Google Scholar

    [28]

    Liu T, Ren J, Tong P Q 2018 Phys. Rev. B 98 184426Google Scholar

    [29]

    Diósi L, Gisin N, Strunz W T 1998 Phys. Rev. A 58 1699Google Scholar

    [30]

    Li P B, Zhou Y, Gao W B, Nori F 2020 Phys. Rev. Lett. 125 153602Google Scholar

    [31]

    Hosokawa K, Shiokawa K, Otsuka Y, Nakajima A, Ogawa T, Kelly J D 2006 Geophys. Res. Lett. 33 L15111Google Scholar

    [32]

    Zhao X Y 2014 Ph. D. Dissertation (Hoboken: Stevens Institute of Technology)

    [33]

    Yu T 2004 Phys. Rev. A 69 062107Google Scholar

  • [1] 崔翔. 电流连续的细导体段模型的磁场及电感. 物理学报, 2020, 69(3): 034101. doi: 10.7498/aps.69.20191212
    [2] 李绿洲, 蒋继乐, 卫荣汉, 李俊鹏, 田煜, 丁建宁. 涂覆聚甲基丙酸甲酯的磁性膜外磁场作用下的往复滑动摩擦行为研究. 物理学报, 2016, 65(1): 018103. doi: 10.7498/aps.65.018103
    [3] 苟立丹, 王晓茜. 杨-巴克斯特自旋1/2链模型的量子关联研究. 物理学报, 2015, 64(7): 070302. doi: 10.7498/aps.64.070302
    [4] 王丹琴, 何创创. 双自旋系统中的量子失协问题研究. 物理学报, 2015, 64(4): 043403. doi: 10.7498/aps.64.043403
    [5] 于振涛, 吕俊伟, 毕波, 周静. 四面体磁梯度张量系统的载体磁干扰补偿方法. 物理学报, 2014, 63(11): 110702. doi: 10.7498/aps.63.110702
    [6] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响. 物理学报, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [7] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协. 物理学报, 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [8] 杨阳, 王安民. 与Ising链耦合的中心双量子比特系统的量子关联. 物理学报, 2013, 62(13): 130305. doi: 10.7498/aps.62.130305
    [9] 谢美秋, 郭斌. 不同磁场环境下Heisenberg XXZ自旋链中的热量子失协. 物理学报, 2013, 62(11): 110303. doi: 10.7498/aps.62.110303
    [10] 沈曼, 张亮, 刘建军. 磁场和量子点尺寸对激子性质的影响. 物理学报, 2012, 61(21): 217103. doi: 10.7498/aps.61.217103
    [11] 张红, 张春元, 张慧亮, 刘建军. 外加磁场下抛物型量子线中的带电激子. 物理学报, 2011, 60(7): 077301. doi: 10.7498/aps.60.077301
    [12] 姜文龙, 孟昭晖, 丛林, 汪津, 王立忠, 韩强, 孟凡超, 高永慧. 双量子阱结构OLED效率和电流的磁效应. 物理学报, 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [13] 张雯. 磁场微重力效应的研究. 物理学报, 2009, 58(4): 2405-2409. doi: 10.7498/aps.58.2405
    [14] 陈杰, 鲁习文. 基于磁荷面分布的舰船磁场预测方法. 物理学报, 2009, 58(6): 3839-3843. doi: 10.7498/aps.58.3839
    [15] 汪津, 华杰, 丁桂英, 常喜, 张刚, 姜文龙. 磁场作用下的有机电致发光. 物理学报, 2009, 58(10): 7272-7277. doi: 10.7498/aps.58.7272
    [16] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响. 物理学报, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [17] 王新军, 王玲玲, 黄维清, 唐黎明, 陈克求. 磁场下含结构缺陷多组分超晶格中的局域电子态和电子输运. 物理学报, 2006, 55(7): 3649-3655. doi: 10.7498/aps.55.3649
    [18] 邹 秀. 斜磁场作用下的射频等离子体平板鞘层结构. 物理学报, 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [19] 李玉现, 刘建军, 李伯臧. 量子点接触中的电导与热功率:磁场与温度的影响. 物理学报, 2005, 54(3): 1366-1369. doi: 10.7498/aps.54.1366
    [20] 黄维清, 陈克求, 帅志刚, 王玲玲, 胡望宇. 磁耦合效应对半无限超晶格中表面电子态的影响. 物理学报, 2004, 53(7): 2330-2335. doi: 10.7498/aps.53.2330
计量
  • 文章访问数:  4482
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2021-08-31
  • 上网日期:  2021-09-11
  • 刊出日期:  2021-11-20

/

返回文章
返回