搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非厄米局域拓扑指标的动力学特性

孙孔浩 易为

引用本文:
Citation:

非厄米局域拓扑指标的动力学特性

孙孔浩, 易为

Dynamics of non-Hermitian local topological marker

Sun Kong-Hao, Yi Wei
PDF
HTML
导出引用
  • 非厄米拓扑系统的拓扑不变量可以由定义在双正交基下的局域拓扑指标刻画. 不同于厄米体系, 非厄米局域拓扑指标在动力学过程中的传播和演化目前还未见文献讨论. 本文研究非厄米拓扑体系局域拓扑指标的动力学特性, 重点关注淬火过程中, 局域拓扑指标由边界向体内的传播. 结果表明, 当淬火前后的体系拓扑性质不同时, 系统中存在局域拓扑指标的流动, 其流速与体系群速度相关, 但具体形式与相应厄米体系不同. 以3个具体模型为例, 通过数值计算说明了这一结论. 其中, 对于特定具有非厄米趋肤效应的模型, 可以发现局域拓扑指标的流速上限与广义布里渊区中的群速度直接相关. 但这一关系在其他非厄米模型中则需要修正, 其更普适的形式有待进一步研究. 本文的结果揭示了非厄米体系中局域拓扑指标传播的复杂性, 是进一步理解非厄米局域拓扑指标动力学行为的基础.
    Topological invariants of non-Hermitian topological systems can be captured by local topological markers defined on the biorthogonal basis. However, unlike the scenario of Hermitian systems, the dynamics of non-Hermitian local topological marker has not yet received much attention so far.Here in this work, we study the dynamic features of local topological markers in non-Hermitian topological systems. In particular, we focus on the propagation of non-Hermitian topological markers in quench dynamics. We find that for the dynamics with topologically distinct pre- and post-quench Hamiltonians, a flow of local topological markers emerges in the bulk, with its propagation speed related to the maximum group velocity. Taking three different non-Hermitian topological models for example, we numerically calculate the propagation speed, and demonstrate that a simple universal relation between the propagation speed and group velocity does not exist, which is unlike the scenarios in previously studied Hermitian systems. Our results reveal the complexity of the local-topological-marker dynamics in non-Hermitian settings, and would stimulate further study on the matter.
      通信作者: 易为, wyiz@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974331)资助的课题
      Corresponding author: Yi Wei, wyiz@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974331)
    [1]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249Google Scholar

    [2]

    Kawabata K, Shiozaki k, Ueda M, Sato M 2019 Phys. Rev. X 9 041015Google Scholar

    [3]

    Zhou H, Lee J Y 2019 Phys. Rev. B 99 235112Google Scholar

    [4]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [5]

    Konotop V V, Yang J, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002Google Scholar

    [6]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2017 Nat. Phys. 14 11Google Scholar

    [7]

    Dalibard J, Castin Y, Mölmer K 1992 Phys. Rev. Lett. 68 580Google Scholar

    [8]

    Carmichael H J 1993 Phys. Rev. Lett. 70 2273Google Scholar

    [9]

    Yao S Y, Wang Z 2018 Phy. Rev. Lett. 121 086803Google Scholar

    [10]

    Yao S Y, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [11]

    Lee C H, Thomale R 2019 Phy. Rev. B 99 201103Google Scholar

    [12]

    McDonald A, Pereg-Barnea T, Clerk A A, 2018 Phys. Rev. X 8 041031Google Scholar

    [13]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phy. Rev. Lett. 121 026808Google Scholar

    [14]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404Google Scholar

    [15]

    Zhang K, Yang Z, Fang C 2020 Phy. Rev. Lett. 125 126402Google Scholar

    [16]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [17]

    Lee T E 2016 Phy. Rev. Lett. 16 133903Google Scholar

    [18]

    Zhang X Z, Gong J B, 2020 Phy. Rev. B 101 045415Google Scholar

    [19]

    Zeng Q B, Yang Y B, Xu Y 2020 Phy. Rev. B 101 020201Google Scholar

    [20]

    Wang X R, Guo C X, Kou S P 2020 Phy. Rev. B 101 121116Google Scholar

    [21]

    Li T Y, Zhang Y S, Yi W 2021 Chin. Phys. Lett. 38 030301Google Scholar

    [22]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Thomale R 2020 Nat. Phys. 16 747Google Scholar

    [23]

    Xiao L, Deng T S, Wang K K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [24]

    Ghatak A, Brandenbourger M, van Wezel J, Coulais C 2020 Proc. Natl. Acad. Sci. U.S.A. 117 29561Google Scholar

    [25]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311Google Scholar

    [26]

    Longhi S 2019 Phys. Rev. Res. 1 023013Google Scholar

    [27]

    Longhi S 2019 Opt. Lett. 44 5804Google Scholar

    [28]

    Xiao L, Deng T S, Wang K K, Wang Z, Yi W, Xue P 2021 Phys. Rev. Lett. 126 230402Google Scholar

    [29]

    Li T Y, Sun J Z, Zhang Y S, Yi W 2021 Phys. Rev. Res. 3 023022Google Scholar

    [30]

    Wang K, Li T, Xiao L, Han Y, Yi W, Xue P 2021 arXiv: 2107.14741

    [31]

    Luo X W, Zhang C W 2019 arXiv: 1912.10652

    [32]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801Google Scholar

    [33]

    Bianco R, Resta R 2011 Phys. Rev. B 84 241106Google Scholar

    [34]

    Caio M D, Mller G, Cooper N R, Bhaseen M J 2019 Nat. Phys. 15 257Google Scholar

    [35]

    Privitera L and Santoro G E 2016 Phy. Rev. B 93 241406Google Scholar

    [36]

    Pozo O, Repellin C, Grushin A G 2019 Phys. Rev. Lett. 123 247401Google Scholar

    [37]

    Qi X L, Wu Y S, Zhang S C 2006 Phys. Rev. B 74 085308Google Scholar

    [38]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

  • 图 1  非厄米局域拓扑指标的标度行为. 系统中心的非厄米局域拓扑指标随着$m$的变化遵循$(m-m_{\rm c})L^{\tfrac{1}{\nu}}$的标度行为. 在$L$分别取$15, 17, 19, 21, 23, 25, 27$等值时(对应于图中不同颜色的曲线), 所有曲线经变换后遵循同一函数形式, 经拟合得到$\nu\approx 1.1259$. 在本文的数值计算中, 取$t_1=1$, $\gamma_x=\gamma_y=0.3$

    Fig. 1.  Scaling behavior of the non-Hermitian local topological marker near the topological phase transition. The numerically calculated local topological markers for different system sizes ($L=15, 17, 19, 21, 23, 25, 27$) collapse to the same curve, with the functional form $(m-m_{\rm c})L^{\tfrac{1}{\nu}}$ and $\nu\approx 1.12(6)$. For all calculations, we take $t_1=1$, $\gamma_x= $$ \gamma_y=0.3$

    图 2  非厄米局域拓扑指标的传播速度 (a) 淬火过程中系统中心格点处的非厄米局域拓扑指标的时间演化. 系统尺寸为$L=23$, 取开边界. 初始时${\boldsymbol{H}}\left(t_1=1,\; m=1\right)$处于拓扑非平庸相, 淬火后${\boldsymbol{H}}\left(t^{\prime}_1=1,\; m^{\prime}=6\right)$处于拓扑平庸相, 淬火前后$\gamma_x=\gamma_y=0.3$. 这里只考虑$x$方向的动力学演化, $y$方向的演化有类似性质. (b) 非厄米局域拓扑指标的传播速度随末态哈密顿量参数$t^{\prime}_1$的变化. 淬火参数与图(a)相同. 分别数值模拟了体系大小为$L=11, 15, 19, 23, 27$时的淬火过程, 并通过线性拟合$t^\ast$$L$的关系, 数值得到了局域拓扑指标的传播速度

    Fig. 2.  Dynamics of the non-Hermitian local topological marker. (a) Spatial distribution (along the $x$-direction) of the non-Hermitian local topological marker at different times of the quench dynamics. The parameters are: $L=23$, ${\boldsymbol{H}}_{\rm i}(t_1=1, \;m=1)$, ${\boldsymbol{H}}_{\rm f}(t'_1=1, \;m'=6)$, $\gamma_x=\gamma_y=0.3$. (b) Propagation speed of the local topological marker as a function of $t'_1$. Other parameters are the same as those in panel (a).

    图 3  模型(5)的非厄米局域拓扑指标的传播速度随$t^{\prime}_1$的变化. 初始时, $t_x=t_y=1, m=1$; 淬火后, $t^{\prime}_x=t^{\prime}_y=t^{\prime}_1, $$ m^{\prime}=6$. 淬火前后$\gamma_x= \gamma_y=\gamma=0.35$

    Fig. 3.  Propagation speed of the non-Hermitian local topological marker for Hamiltonian (5). We fix $\gamma_x=\gamma_y=\gamma=0.35$, and the pre- and post-quench parameters are $t_x=t_y=1, $$ \; m=1$ and $t^{\prime}_x=t^{\prime}_y=t^{\prime}_1, \; m^{\prime}=6$, respectively.

    图 4  模型(8)的非厄米局域拓扑指标的传播速度随$t^{\prime}_1$的变化. 初始时, $t_x=t_y=1, m=1$; 淬火后, $t^{\prime}_x=t^{\prime}_y=t^{\prime}_1, $$ m^{\prime}=6$. 淬火前后$\gamma=0.3$

    Fig. 4.  Propagation speed of the non-Hermitian local topological marker for Hamiltonian (8). We fix $\gamma=0.3$, and the pre- and post-quench parameters are $t_x=t_y=1, m=1$ and $t^{\prime}_x=t^{\prime}_y=t^{\prime}_1, m^{\prime}=6$, respectively.

  • [1]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249Google Scholar

    [2]

    Kawabata K, Shiozaki k, Ueda M, Sato M 2019 Phys. Rev. X 9 041015Google Scholar

    [3]

    Zhou H, Lee J Y 2019 Phys. Rev. B 99 235112Google Scholar

    [4]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [5]

    Konotop V V, Yang J, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002Google Scholar

    [6]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2017 Nat. Phys. 14 11Google Scholar

    [7]

    Dalibard J, Castin Y, Mölmer K 1992 Phys. Rev. Lett. 68 580Google Scholar

    [8]

    Carmichael H J 1993 Phys. Rev. Lett. 70 2273Google Scholar

    [9]

    Yao S Y, Wang Z 2018 Phy. Rev. Lett. 121 086803Google Scholar

    [10]

    Yao S Y, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [11]

    Lee C H, Thomale R 2019 Phy. Rev. B 99 201103Google Scholar

    [12]

    McDonald A, Pereg-Barnea T, Clerk A A, 2018 Phys. Rev. X 8 041031Google Scholar

    [13]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phy. Rev. Lett. 121 026808Google Scholar

    [14]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404Google Scholar

    [15]

    Zhang K, Yang Z, Fang C 2020 Phy. Rev. Lett. 125 126402Google Scholar

    [16]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [17]

    Lee T E 2016 Phy. Rev. Lett. 16 133903Google Scholar

    [18]

    Zhang X Z, Gong J B, 2020 Phy. Rev. B 101 045415Google Scholar

    [19]

    Zeng Q B, Yang Y B, Xu Y 2020 Phy. Rev. B 101 020201Google Scholar

    [20]

    Wang X R, Guo C X, Kou S P 2020 Phy. Rev. B 101 121116Google Scholar

    [21]

    Li T Y, Zhang Y S, Yi W 2021 Chin. Phys. Lett. 38 030301Google Scholar

    [22]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Thomale R 2020 Nat. Phys. 16 747Google Scholar

    [23]

    Xiao L, Deng T S, Wang K K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [24]

    Ghatak A, Brandenbourger M, van Wezel J, Coulais C 2020 Proc. Natl. Acad. Sci. U.S.A. 117 29561Google Scholar

    [25]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311Google Scholar

    [26]

    Longhi S 2019 Phys. Rev. Res. 1 023013Google Scholar

    [27]

    Longhi S 2019 Opt. Lett. 44 5804Google Scholar

    [28]

    Xiao L, Deng T S, Wang K K, Wang Z, Yi W, Xue P 2021 Phys. Rev. Lett. 126 230402Google Scholar

    [29]

    Li T Y, Sun J Z, Zhang Y S, Yi W 2021 Phys. Rev. Res. 3 023022Google Scholar

    [30]

    Wang K, Li T, Xiao L, Han Y, Yi W, Xue P 2021 arXiv: 2107.14741

    [31]

    Luo X W, Zhang C W 2019 arXiv: 1912.10652

    [32]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801Google Scholar

    [33]

    Bianco R, Resta R 2011 Phys. Rev. B 84 241106Google Scholar

    [34]

    Caio M D, Mller G, Cooper N R, Bhaseen M J 2019 Nat. Phys. 15 257Google Scholar

    [35]

    Privitera L and Santoro G E 2016 Phy. Rev. B 93 241406Google Scholar

    [36]

    Pozo O, Repellin C, Grushin A G 2019 Phys. Rev. Lett. 123 247401Google Scholar

    [37]

    Qi X L, Wu Y S, Zhang S C 2006 Phys. Rev. B 74 085308Google Scholar

    [38]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

  • [1] 古燕, 陆展鹏. 非厄米耦合链中的局域化转变. 物理学报, 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [2] 谭超, 梁勇, 邹敏, 雷同, 陈龙, 唐平华, 刘明伟. 基于不同变系数和势场的分数系统中二次相位调控厄米-高斯光束动力学. 物理学报, 2024, 73(13): 134205. doi: 10.7498/aps.73.20240427
    [3] 尹相国, 于海如, 郝亚江, 张云波. 一维接触排斥相互作用单自旋翻转费米气体的基态和淬火动力学性质. 物理学报, 2024, 73(2): 020302. doi: 10.7498/aps.73.20231425
    [4] 任翠翠, 尹相国. 耗散诱导的非厄米边缘爆发重现. 物理学报, 2023, 72(16): 160501. doi: 10.7498/aps.72.20230338
    [5] 徐灿鸿, 许志聪, 周子榆, 成恩宏, 郎利君. 非厄米格点模型的经典电路模拟. 物理学报, 2023, 72(20): 200301. doi: 10.7498/aps.72.20230914
    [6] 非厄米物理前沿专题编者按. 物理学报, 2022, 71(13): 130101. doi: 10.7498/aps.71.130101
    [7] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展. 物理学报, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [8] 邓天舒. 畴壁系统中的非厄米趋肤效应. 物理学报, 2022, 71(17): 170306. doi: 10.7498/aps.71.20221087
    [9] 侯博, 曾琦波. 非厄米镶嵌型二聚化晶格. 物理学报, 2022, 71(13): 130302. doi: 10.7498/aps.71.20220890
    [10] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [11] 张禧征, 王鹏, 张坤亮, 杨学敏, 宋智. 非厄米临界动力学及其在量子多体系统中的应用. 物理学报, 2022, 71(17): 174501. doi: 10.7498/aps.71.20220914
    [12] 成恩宏, 郎利君. 非互易Aubry-André 模型的经典电路模拟. 物理学报, 2022, 71(16): 160301. doi: 10.7498/aps.71.20220219
    [13] 符浩, 曹凯源, 钟鸣, 童培庆. 两次淬火下横场中XY链的动力学量子相变. 物理学报, 2021, 70(18): 180502. doi: 10.7498/aps.70.20210728
    [14] 邓天舒, 易为. 动力学淬火过程中的不动点及衍生拓扑现象. 物理学报, 2019, 68(4): 040303. doi: 10.7498/aps.68.20181928
    [15] 杨超, 陈澍. 淬火动力学中的拓扑不变量. 物理学报, 2019, 68(22): 220304. doi: 10.7498/aps.68.20191410
    [16] 钱江海, 韩定定, 马余刚. 开放式复杂航空网络系统的动力学演化. 物理学报, 2011, 60(9): 098901. doi: 10.7498/aps.60.098901
    [17] 冯兴, 朱正和, 刘晓亚, 杨向东, 黄玮. SiH2体系的分子反应动力学. 物理学报, 2009, 58(12): 8217-8223. doi: 10.7498/aps.58.8217
    [18] 黄良锋, 李延龄, 倪美燕, 王贤龙, 张国仁, 曾雉. 氢掺杂单层石墨体系的晶格动力学研究. 物理学报, 2009, 58(13): 306-S312. doi: 10.7498/aps.58.306
    [19] 陈增军, 宁西京. 非厄米哈密顿量的物理意义. 物理学报, 2003, 52(11): 2683-2686. doi: 10.7498/aps.52.2683
    [20] 张凯旺, 袁辉球, 钟建新. 一类非公度体系的电子动力学. 物理学报, 1999, 48(3): 497-504. doi: 10.7498/aps.48.497
计量
  • 文章访问数:  6532
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-09-15
  • 上网日期:  2021-10-12
  • 刊出日期:  2021-12-05

/

返回文章
返回