-
The history of semiconductor materials is briefly reviewed in this work. By taking GaN-based high electron mobility transistor as an example, the heat generation mechanisms and thermal management strategies of wide bandgap semiconductor devices are discussed. Moreover, by taking β-Ga2O3 as an example, the thermal management challenges of emerging ultrawide bandgap semiconductors are briefly discussed. The following discussions focus on the interfacial thermal transport which widely exists in the semiconductor devices mentioned above. The recent advancements in room-temperature wafer bonding for thermal management applications are summarized. Furthermore, some open questions about the physical understanding of interfacial thermal transport are also mentioned. Finally, the theoretical models for calculating thermal boundary conductance are reviewed and the challenges and opportunities are pointed out.
-
Keywords:
- third-generation semiconductors /
- thermal management /
- interfaces
[1] Cheng Z, Bougher T, Bai T, Wang S Y, Li C, Yates L, Foley B M, Goorsky M, Cola B A, Faili F, Graham S 2018 ACS Appl. Mater. & Interf. 10 4808
[2] Anaya J, Rossi S, Alomari M, Kohn E, Toth L, Pecz B, Hobart K D, Anderson T J, Feygelson T I, Pate B B, Kuball M 2016 Acta Mater. 103 141Google Scholar
[3] Yates L, Anderson J, Gu X, Lee C, Bai T, Mecklenburg M, Aoki T, Goorsky M S, Kuball M, Piner E L, Graham S 2018 ACS Appl. Mater. & Interf. 10 24302
[4] Reese S B, Remo T, Green J, Zakutayev A 2019 Joule 3 903Google Scholar
[5] Jiang P, Qian X, Li X, Yang R 2018 Appl. Phys. Lett. 113 232105Google Scholar
[6] Cheng Z, Yates L, Shi J, Tadjer M J, Hobart K D, Graham S 2019 APL Mater. 7 031118Google Scholar
[7] Cheng Z, Wheeler V D, Bai T, Shi J, Tadjer M J, Feygelson T, Hobart K D, Goorsky M S, Graham S 2020 Appl. Phys. Lett. 116 062105Google Scholar
[8] Mu F, Cheng Z, Shi J, Shin S, Xu B, Shiomi J, Graham S, Suga T 2019 ACS Appl. Mater. & Interf. 11 33428
[9] Cheng Z, Mu F, Yates L, Suga T, Graham S 2020 ACS Appl. Mater. & Interf. 12 8376
[10] Kang JS, Li M, Wu H, Nguyen H, Aoki T, Hu Y 2021 Nat. Electron. 17 1
[11] Cheng Z, Mu F, You T, Xu W, Shi J, Liao M E, Wang Y, Huynh K, Suga T, Goorsky M S, Ou X, Graham S 2020 ACS Appl. Mater. & Interf. 12 44943
[12] Cheng Z, Mu F, Ji X, You T, Xu W, Suga T, Ou X, Cahill D G, Graham S 2021 ACS Appl. Mater. & Interf. 13 31843
[13] Cheng Z, Shi J, Yuan C, Kim S, Graham S 2021 Semiconduc. and Semimetals (Elsevier) 107 77
[14] Dai J, Tian Z 2020 Phys. Rev. B. 101 041301Google Scholar
[15] Gaskins J T, Kotsonis G, Giri A, Ju S, Rohskopf A, Wang Y, Bai T, Sachet E, Shelton C T, Liu Z, Cheng Z, Foley B, Graham S, Luo T, Henry A, Goorsky M S, Shiomi J, Maria J P, Hopkins P E 2018 Nano Lett. 18 7469Google Scholar
[16] Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. in Energ. Res. 6 48Google Scholar
[17] Deng C, Huang Y, An M, Yang N 2020 Mater. Today Phys. 16 100305
[18] Dames C, Chen G 2004 J. of Appl. Phys. 95 682Google Scholar
[19] Prasher R S, Phelan P E 2001 J. Heat Transf. 123 105Google Scholar
[20] Hopkins P E, Duda J C, Norris P M 2011 J. Heat Transf. 133 062401Google Scholar
[21] Chalopin Y, Volz S 2013 Appl. Phys. Lett. 103 051602Google Scholar
[22] Gordiz K, Henry A 2016 Sci. Rep. 6 23139Google Scholar
[23] Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901
[24] Murakami T, Hori T, Shiga T, Shiomi J 2014 Appl. Phys. Exp. 7 121801Google Scholar
[25] Yang N, Luo T, Esfarjani K, Henry A, Tian Z, Shiomi J, Chalopin Y, Li B, Chen G 2015 J. of Comput. and Theoret. Nanosci. 12 168Google Scholar
[26] Muraleedharan M G, Gordiz K, Rohskopf A, Wyant S T, Cheng Z, Graham S, Henry A 2020 arXiv: 2011.01070
[27] Cheng Z, Koh Y R, Ahmad H, Hu R, Shi J, Liao M E, Wang Y, Bai T, Li R, Lee E, Clinton E A, Matthews M C, Engel Z, Yates L, Luo T, Goorsky M S, Doolittle W A, Tian Z, Hopkins P E, Graham S 2020 Commun. Phys. 3 1Google Scholar
[28] Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar
[29] Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. of Materiomics 6 248Google Scholar
[30] Hao Q, Garg J 2021 ES Mater. & Manuf. 14 36
-
[1] Cheng Z, Bougher T, Bai T, Wang S Y, Li C, Yates L, Foley B M, Goorsky M, Cola B A, Faili F, Graham S 2018 ACS Appl. Mater. & Interf. 10 4808
[2] Anaya J, Rossi S, Alomari M, Kohn E, Toth L, Pecz B, Hobart K D, Anderson T J, Feygelson T I, Pate B B, Kuball M 2016 Acta Mater. 103 141Google Scholar
[3] Yates L, Anderson J, Gu X, Lee C, Bai T, Mecklenburg M, Aoki T, Goorsky M S, Kuball M, Piner E L, Graham S 2018 ACS Appl. Mater. & Interf. 10 24302
[4] Reese S B, Remo T, Green J, Zakutayev A 2019 Joule 3 903Google Scholar
[5] Jiang P, Qian X, Li X, Yang R 2018 Appl. Phys. Lett. 113 232105Google Scholar
[6] Cheng Z, Yates L, Shi J, Tadjer M J, Hobart K D, Graham S 2019 APL Mater. 7 031118Google Scholar
[7] Cheng Z, Wheeler V D, Bai T, Shi J, Tadjer M J, Feygelson T, Hobart K D, Goorsky M S, Graham S 2020 Appl. Phys. Lett. 116 062105Google Scholar
[8] Mu F, Cheng Z, Shi J, Shin S, Xu B, Shiomi J, Graham S, Suga T 2019 ACS Appl. Mater. & Interf. 11 33428
[9] Cheng Z, Mu F, Yates L, Suga T, Graham S 2020 ACS Appl. Mater. & Interf. 12 8376
[10] Kang JS, Li M, Wu H, Nguyen H, Aoki T, Hu Y 2021 Nat. Electron. 17 1
[11] Cheng Z, Mu F, You T, Xu W, Shi J, Liao M E, Wang Y, Huynh K, Suga T, Goorsky M S, Ou X, Graham S 2020 ACS Appl. Mater. & Interf. 12 44943
[12] Cheng Z, Mu F, Ji X, You T, Xu W, Suga T, Ou X, Cahill D G, Graham S 2021 ACS Appl. Mater. & Interf. 13 31843
[13] Cheng Z, Shi J, Yuan C, Kim S, Graham S 2021 Semiconduc. and Semimetals (Elsevier) 107 77
[14] Dai J, Tian Z 2020 Phys. Rev. B. 101 041301Google Scholar
[15] Gaskins J T, Kotsonis G, Giri A, Ju S, Rohskopf A, Wang Y, Bai T, Sachet E, Shelton C T, Liu Z, Cheng Z, Foley B, Graham S, Luo T, Henry A, Goorsky M S, Shiomi J, Maria J P, Hopkins P E 2018 Nano Lett. 18 7469Google Scholar
[16] Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. in Energ. Res. 6 48Google Scholar
[17] Deng C, Huang Y, An M, Yang N 2020 Mater. Today Phys. 16 100305
[18] Dames C, Chen G 2004 J. of Appl. Phys. 95 682Google Scholar
[19] Prasher R S, Phelan P E 2001 J. Heat Transf. 123 105Google Scholar
[20] Hopkins P E, Duda J C, Norris P M 2011 J. Heat Transf. 133 062401Google Scholar
[21] Chalopin Y, Volz S 2013 Appl. Phys. Lett. 103 051602Google Scholar
[22] Gordiz K, Henry A 2016 Sci. Rep. 6 23139Google Scholar
[23] Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901
[24] Murakami T, Hori T, Shiga T, Shiomi J 2014 Appl. Phys. Exp. 7 121801Google Scholar
[25] Yang N, Luo T, Esfarjani K, Henry A, Tian Z, Shiomi J, Chalopin Y, Li B, Chen G 2015 J. of Comput. and Theoret. Nanosci. 12 168Google Scholar
[26] Muraleedharan M G, Gordiz K, Rohskopf A, Wyant S T, Cheng Z, Graham S, Henry A 2020 arXiv: 2011.01070
[27] Cheng Z, Koh Y R, Ahmad H, Hu R, Shi J, Liao M E, Wang Y, Bai T, Li R, Lee E, Clinton E A, Matthews M C, Engel Z, Yates L, Luo T, Goorsky M S, Doolittle W A, Tian Z, Hopkins P E, Graham S 2020 Commun. Phys. 3 1Google Scholar
[28] Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar
[29] Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. of Materiomics 6 248Google Scholar
[30] Hao Q, Garg J 2021 ES Mater. & Manuf. 14 36
计量
- 文章访问数: 7504
- PDF下载量: 468
- 被引次数: 0