搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第三代半导体材料及器件中的热科学和工程问题

程哲

引用本文:
Citation:

第三代半导体材料及器件中的热科学和工程问题

程哲

Thermal science and engineering in third-generation semiconductor materials and devices

Cheng Zhe
PDF
HTML
导出引用
  • 简单回顾了半导体材料的发展历史, 并以基于氮化镓的高电子迁移率晶体管为例, 介绍了第三代半导体器件的产热机制和热管理策略. 以β相氧化镓为例, 简单讨论了新兴的超宽禁带半导体的发展和热管理挑战. 然后重点讨论了一些界面键合技术用于半导体散热的进展, 同时指出这些器件中大量存在的界面散热的工程难题背后的科学问题: 界面传热的物理理解. 在回顾了之前界面传热的理论发展后, 指出了理解界面传热当前遇到的一些困难、机遇和方向.
    The history of semiconductor materials is briefly reviewed in this work. By taking GaN-based high electron mobility transistor as an example, the heat generation mechanisms and thermal management strategies of wide bandgap semiconductor devices are discussed. Moreover, by taking β-Ga2O3 as an example, the thermal management challenges of emerging ultrawide bandgap semiconductors are briefly discussed. The following discussions focus on the interfacial thermal transport which widely exists in the semiconductor devices mentioned above. The recent advancements in room-temperature wafer bonding for thermal management applications are summarized. Furthermore, some open questions about the physical understanding of interfacial thermal transport are also mentioned. Finally, the theoretical models for calculating thermal boundary conductance are reviewed and the challenges and opportunities are pointed out.
      通信作者: 程哲, zcheng18@illinois.edu
      Corresponding author: Cheng Zhe, zcheng18@illinois.edu
    [1]

    Cheng Z, Bougher T, Bai T, Wang S Y, Li C, Yates L, Foley B M, Goorsky M, Cola B A, Faili F, Graham S 2018 ACS Appl. Mater. & Interf. 10 4808

    [2]

    Anaya J, Rossi S, Alomari M, Kohn E, Toth L, Pecz B, Hobart K D, Anderson T J, Feygelson T I, Pate B B, Kuball M 2016 Acta Mater. 103 141Google Scholar

    [3]

    Yates L, Anderson J, Gu X, Lee C, Bai T, Mecklenburg M, Aoki T, Goorsky M S, Kuball M, Piner E L, Graham S 2018 ACS Appl. Mater. & Interf. 10 24302

    [4]

    Reese S B, Remo T, Green J, Zakutayev A 2019 Joule 3 903Google Scholar

    [5]

    Jiang P, Qian X, Li X, Yang R 2018 Appl. Phys. Lett. 113 232105Google Scholar

    [6]

    Cheng Z, Yates L, Shi J, Tadjer M J, Hobart K D, Graham S 2019 APL Mater. 7 031118Google Scholar

    [7]

    Cheng Z, Wheeler V D, Bai T, Shi J, Tadjer M J, Feygelson T, Hobart K D, Goorsky M S, Graham S 2020 Appl. Phys. Lett. 116 062105Google Scholar

    [8]

    Mu F, Cheng Z, Shi J, Shin S, Xu B, Shiomi J, Graham S, Suga T 2019 ACS Appl. Mater. & Interf. 11 33428

    [9]

    Cheng Z, Mu F, Yates L, Suga T, Graham S 2020 ACS Appl. Mater. & Interf. 12 8376

    [10]

    Kang JS, Li M, Wu H, Nguyen H, Aoki T, Hu Y 2021 Nat. Electron. 17 1

    [11]

    Cheng Z, Mu F, You T, Xu W, Shi J, Liao M E, Wang Y, Huynh K, Suga T, Goorsky M S, Ou X, Graham S 2020 ACS Appl. Mater. & Interf. 12 44943

    [12]

    Cheng Z, Mu F, Ji X, You T, Xu W, Suga T, Ou X, Cahill D G, Graham S 2021 ACS Appl. Mater. & Interf. 13 31843

    [13]

    Cheng Z, Shi J, Yuan C, Kim S, Graham S 2021 Semiconduc. and Semimetals (Elsevier) 107 77

    [14]

    Dai J, Tian Z 2020 Phys. Rev. B. 101 041301Google Scholar

    [15]

    Gaskins J T, Kotsonis G, Giri A, Ju S, Rohskopf A, Wang Y, Bai T, Sachet E, Shelton C T, Liu Z, Cheng Z, Foley B, Graham S, Luo T, Henry A, Goorsky M S, Shiomi J, Maria J P, Hopkins P E 2018 Nano Lett. 18 7469Google Scholar

    [16]

    Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. in Energ. Res. 6 48Google Scholar

    [17]

    Deng C, Huang Y, An M, Yang N 2020 Mater. Today Phys. 16 100305

    [18]

    Dames C, Chen G 2004 J. of Appl. Phys. 95 682Google Scholar

    [19]

    Prasher R S, Phelan P E 2001 J. Heat Transf. 123 105Google Scholar

    [20]

    Hopkins P E, Duda J C, Norris P M 2011 J. Heat Transf. 133 062401Google Scholar

    [21]

    Chalopin Y, Volz S 2013 Appl. Phys. Lett. 103 051602Google Scholar

    [22]

    Gordiz K, Henry A 2016 Sci. Rep. 6 23139Google Scholar

    [23]

    Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901

    [24]

    Murakami T, Hori T, Shiga T, Shiomi J 2014 Appl. Phys. Exp. 7 121801Google Scholar

    [25]

    Yang N, Luo T, Esfarjani K, Henry A, Tian Z, Shiomi J, Chalopin Y, Li B, Chen G 2015 J. of Comput. and Theoret. Nanosci. 12 168Google Scholar

    [26]

    Muraleedharan M G, Gordiz K, Rohskopf A, Wyant S T, Cheng Z, Graham S, Henry A 2020 arXiv: 2011.01070

    [27]

    Cheng Z, Koh Y R, Ahmad H, Hu R, Shi J, Liao M E, Wang Y, Bai T, Li R, Lee E, Clinton E A, Matthews M C, Engel Z, Yates L, Luo T, Goorsky M S, Doolittle W A, Tian Z, Hopkins P E, Graham S 2020 Commun. Phys. 3 1Google Scholar

    [28]

    Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar

    [29]

    Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. of Materiomics 6 248Google Scholar

    [30]

    Hao Q, Garg J 2021 ES Mater. & Manuf. 14 36

  • 图 1  基于氮化镓的高电子迁移率晶体管的示意图和节点附近的电场分布. 热点位于栅极附近

    Fig. 1.  The schematic diagram of a GaN high electron mobility transistors (HEMT) and the electric field distribution across the channel. The hotspot is located close to the gate.

  • [1]

    Cheng Z, Bougher T, Bai T, Wang S Y, Li C, Yates L, Foley B M, Goorsky M, Cola B A, Faili F, Graham S 2018 ACS Appl. Mater. & Interf. 10 4808

    [2]

    Anaya J, Rossi S, Alomari M, Kohn E, Toth L, Pecz B, Hobart K D, Anderson T J, Feygelson T I, Pate B B, Kuball M 2016 Acta Mater. 103 141Google Scholar

    [3]

    Yates L, Anderson J, Gu X, Lee C, Bai T, Mecklenburg M, Aoki T, Goorsky M S, Kuball M, Piner E L, Graham S 2018 ACS Appl. Mater. & Interf. 10 24302

    [4]

    Reese S B, Remo T, Green J, Zakutayev A 2019 Joule 3 903Google Scholar

    [5]

    Jiang P, Qian X, Li X, Yang R 2018 Appl. Phys. Lett. 113 232105Google Scholar

    [6]

    Cheng Z, Yates L, Shi J, Tadjer M J, Hobart K D, Graham S 2019 APL Mater. 7 031118Google Scholar

    [7]

    Cheng Z, Wheeler V D, Bai T, Shi J, Tadjer M J, Feygelson T, Hobart K D, Goorsky M S, Graham S 2020 Appl. Phys. Lett. 116 062105Google Scholar

    [8]

    Mu F, Cheng Z, Shi J, Shin S, Xu B, Shiomi J, Graham S, Suga T 2019 ACS Appl. Mater. & Interf. 11 33428

    [9]

    Cheng Z, Mu F, Yates L, Suga T, Graham S 2020 ACS Appl. Mater. & Interf. 12 8376

    [10]

    Kang JS, Li M, Wu H, Nguyen H, Aoki T, Hu Y 2021 Nat. Electron. 17 1

    [11]

    Cheng Z, Mu F, You T, Xu W, Shi J, Liao M E, Wang Y, Huynh K, Suga T, Goorsky M S, Ou X, Graham S 2020 ACS Appl. Mater. & Interf. 12 44943

    [12]

    Cheng Z, Mu F, Ji X, You T, Xu W, Suga T, Ou X, Cahill D G, Graham S 2021 ACS Appl. Mater. & Interf. 13 31843

    [13]

    Cheng Z, Shi J, Yuan C, Kim S, Graham S 2021 Semiconduc. and Semimetals (Elsevier) 107 77

    [14]

    Dai J, Tian Z 2020 Phys. Rev. B. 101 041301Google Scholar

    [15]

    Gaskins J T, Kotsonis G, Giri A, Ju S, Rohskopf A, Wang Y, Bai T, Sachet E, Shelton C T, Liu Z, Cheng Z, Foley B, Graham S, Luo T, Henry A, Goorsky M S, Shiomi J, Maria J P, Hopkins P E 2018 Nano Lett. 18 7469Google Scholar

    [16]

    Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. in Energ. Res. 6 48Google Scholar

    [17]

    Deng C, Huang Y, An M, Yang N 2020 Mater. Today Phys. 16 100305

    [18]

    Dames C, Chen G 2004 J. of Appl. Phys. 95 682Google Scholar

    [19]

    Prasher R S, Phelan P E 2001 J. Heat Transf. 123 105Google Scholar

    [20]

    Hopkins P E, Duda J C, Norris P M 2011 J. Heat Transf. 133 062401Google Scholar

    [21]

    Chalopin Y, Volz S 2013 Appl. Phys. Lett. 103 051602Google Scholar

    [22]

    Gordiz K, Henry A 2016 Sci. Rep. 6 23139Google Scholar

    [23]

    Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901

    [24]

    Murakami T, Hori T, Shiga T, Shiomi J 2014 Appl. Phys. Exp. 7 121801Google Scholar

    [25]

    Yang N, Luo T, Esfarjani K, Henry A, Tian Z, Shiomi J, Chalopin Y, Li B, Chen G 2015 J. of Comput. and Theoret. Nanosci. 12 168Google Scholar

    [26]

    Muraleedharan M G, Gordiz K, Rohskopf A, Wyant S T, Cheng Z, Graham S, Henry A 2020 arXiv: 2011.01070

    [27]

    Cheng Z, Koh Y R, Ahmad H, Hu R, Shi J, Liao M E, Wang Y, Bai T, Li R, Lee E, Clinton E A, Matthews M C, Engel Z, Yates L, Luo T, Goorsky M S, Doolittle W A, Tian Z, Hopkins P E, Graham S 2020 Commun. Phys. 3 1Google Scholar

    [28]

    Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar

    [29]

    Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. of Materiomics 6 248Google Scholar

    [30]

    Hao Q, Garg J 2021 ES Mater. & Manuf. 14 36

  • [1] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [2] 张先飞, 王玲玲, 朱海, 曾诚. 自由流体层与多孔介质层界面的盐指现象的统一域法模拟. 物理学报, 2020, 69(21): 214701. doi: 10.7498/aps.69.20200351
    [3] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理. 物理学报, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [4] 刘伯飞, 白立沙, 张德坤, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹. 非晶硅界面缓冲层对非晶硅锗电池性能的影响. 物理学报, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [5] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [6] 王飞, 刘望, 邓爱红, 朱敬军, 安竹, 汪渊. 界面对ZrN/TaN纳米多层膜固氦性能的影响. 物理学报, 2013, 62(18): 186801. doi: 10.7498/aps.62.186801
    [7] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [8] 杨未强, 侯静, 宋锐, 刘泽金. 高功率光纤激光器二级抽运技术的理论分析. 物理学报, 2011, 60(8): 084210. doi: 10.7498/aps.60.084210
    [9] 刘晓旭, 殷景华, 程伟东, 卜文斌, 范勇, 吴忠华. 利用小角X射线散射技术研究组分对聚酰亚胺/Al2O3杂化薄膜界面特性与分形特征的影响. 物理学报, 2011, 60(5): 056101. doi: 10.7498/aps.60.056101
    [10] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究. 物理学报, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [11] 张宪刚, 宗亚平, 王明涛, 吴艳. 晶粒生长演变相场法模拟界面表达的物理模型. 物理学报, 2011, 60(6): 068201. doi: 10.7498/aps.60.068201
    [12] 陈顺生, 黄昌, 王瑞龙, 杨昌平, 孙志刚. Ag/Nd0.7Sr0.3MnO3陶瓷界面电输运性质研究. 物理学报, 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
    [13] 朱樟明, 左平, 杨银堂. 考虑硅通孔的三维集成电路热传输解析模型. 物理学报, 2011, 60(11): 118001. doi: 10.7498/aps.60.118001
    [14] 严雄伟, 於海武, 郑建刚, 李明中, 蒋新颖, 段文涛, 曹丁象, 王明哲, 单小童, 张永亮. 梯度掺杂Yb ∶YAG重频激光器热管理研究. 物理学报, 2011, 60(4): 047801. doi: 10.7498/aps.60.047801
    [15] 刘贵立, 杨忠华, 方戈亮. 镁/镀镍碳纳米管界面特性电子理论研究. 物理学报, 2009, 58(5): 3364-3369. doi: 10.7498/aps.58.3364
    [16] 杨杭生, 谢英俊. 立方氮化硼薄膜生长过程中的界面控制. 物理学报, 2007, 56(9): 5400-5407. doi: 10.7498/aps.56.5400
    [17] 刘贵立, 郭玉福, 李荣德. ZA27/CNT界面特性电子理论研究. 物理学报, 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [18] 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平. 有机半导体异质界面电荷传输解析模型研究. 物理学报, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [19] 唐远河, 解光勇, 刘汉臣, 邵建斌, 马 琦, 刘会平, 宁 辉, 杨 彧, 严成海. 基于粒子成像测速技术的水中气泡界面的光学性质研究. 物理学报, 2006, 55(5): 2257-2262. doi: 10.7498/aps.55.2257
    [20] 牟维兵, 陈盘训. 用蒙特卡罗法计算X射线在重金属界面的剂量增强系数. 物理学报, 2001, 50(2): 189-192. doi: 10.7498/aps.50.189
计量
  • 文章访问数:  4689
  • PDF下载量:  369
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-10-13
  • 上网日期:  2021-10-28
  • 刊出日期:  2021-12-05

/

返回文章
返回