搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中流光放电流光丝的再发光和暂停行为

王雪 温小琼 王丽茹 杨元天 薛晓东

引用本文:
Citation:

水中流光放电流光丝的再发光和暂停行为

王雪, 温小琼, 王丽茹, 杨元天, 薛晓东

Re-illumination and pause behavior of streamer filament of streamer discharge in water

Wang Xue, Wen Xiao-Qiong, Wang Li-Ru, Yang Yuan-Tian, Xue Xiao-Dong
PDF
HTML
导出引用
  • 水中流光放电是研究水中放电基本物理、化学过程的主要研究对象. 本文利用四分幅超高速相机、采用针-板电极结构、在20—800 μS/cm水电导率范围内研究了水中微秒脉冲流光放电流光丝的再发光和暂停行为, 探讨了高水电导率下观测不到流光丝的再发光的原因. 结果发现: 再发光在不同的流光丝之间交替发生并存在两种模式: 一种为整根丝熄灭后再发光; 一种为只有先端部分发光熄灭随后恢复发光. 随着水电导率的增大, 观测到流光丝的再发光现象的频度急剧减小, 540 μS/cm水电导率时降到零; 在20—800 μS/cm水电导率条件下都可观测到流光丝伴生冲击波串分段现象, 冲击波串分段现象的出现频度在65%以上, 表明在20—800 μS/cm水电导率条件下流光丝的暂停是一种普遍行为. 通过测量两段冲击波的半径差得到流光的暂停时间平均为157 ns, 几乎不受水电导率的影响; 随着水电导率的增大, 流光丝的发光强度显著增大, 水电导率大于350 μS/cm时, 流光丝暂停期间内流光丝的光强度无法衰减到相机分辨水平以下, 在相机获得的发光图像上看上去是持续发光的, 难以分辨出流光丝“熄灭-再发光”过程.
    The streamer discharge in water is a main object for studying the basic physical and chemical processes of an electric discharge in water. In this paper, the re-illuminations and the pause behaviors of a streamer filament of the microsecond pulsed streamer discharge in water with different conductivities (20 to 800 µS/cm) are studied by adopting a needle-plate electrode system and an ultra-high-speed camera system. The cause why the re-illumination of the streamer filament is difficult to detect by using the camera system as the water conductivity gets higher is discussed. It is found that the re-illumination alternately occurs among different streamer filaments, and two modes of the re-illumination are identified: one is that the whole filament quenches and then illuminates again; the other is that only the tip part of the filament quenches and then resumes the illumination. The appearance rate of the re-illumination of the streamer filament decreases rapidly as the water conductivity increases, and then drops to zero as the water conductivity exceeds 540 µS/cm. Within a water conductivity range of 20–800 µS/cm, the appearance rate of segmentation in shockwave pattern of the streamer filament is larger than 65%, indicating that the pause is a common behavior of the streamer filament. By measuring the difference in radius between two adjacent shockwave segments, the average pause period of the streamer filament is estimated at 157 ns, which is almost not affected by the water conductivity. As the water conductivity increases, the light intensity of the streamer filament increases rapidly. The light intensity of the streamer filament cannot decay to the noise level of the camera system during the pause period of the streamer filament as the water conductivity exceeds 350 µS/cm. The streamer filament produces glow on the light emission image, which makes it difficult to distinguish the “extinction and illumination” process by the camera system.
      通信作者: 温小琼, wenxq@dlut.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 11635004)资助的课题
      Corresponding author: Wen Xiao-Qiong, wenxq@dlut.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11635004)
    [1]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Processes Polym. 5 503Google Scholar

    [2]

    Locke B R, Thagard S M 2012 Plasma Chem. Plasma Process. 32 875Google Scholar

    [3]

    Chen Q, Li J S, Li Y F 2015 J. Phys. D: Appl. Phys. 48 424005Google Scholar

    [4]

    Sivachandiran L, Khacef A 2017 RSC Adv. 7 1822Google Scholar

    [5]

    Saito N, Bratescu M A, Hashimi K 2018 Jpn. J. Appl. Phys. 57 0102A4Google Scholar

    [6]

    Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G E, Graham W G, Graves D B, Hofman-Caris R C H M, Maric D, Reid J P, Ceriani E, Fernandez Rivas D, Foster J E, Garrick S C, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts E C, Pawlat J, Lj Petrovic Z, Pflieger R, Reuter S, Schram D C, Schröter S, Shiraiwa M, Tarabová B, Tsai P A, Verlet J R R, von Woedtke T, Wilson K R, Yasui K, Zvereva G 2016 Plasma Sources Sci. Technol. 25 053002Google Scholar

    [7]

    Adamovich I, Baalrud S D, Bogaerts A, Bruggeman P J, Cappelli M, Colombo V, Czarnetzki U, Ebert U, Eden J G, Favia P, Graves D B, Hamaguchi S, Hieftje G, Hori M, Kaganovich I D, Kortshagen U, Kushner M J, Mason N J, Mazouffre S, Mededovic Thagard S, Metelmann H R, Mizuno A, Moreau E, Murphy A B, Niemira B A, Oehrlein G S, Petrovic Z L, Pitchford L C, Pu Y K, Rauf S, Sakai O, Samukawa S, Starikovskaia S, Tennyson J, Terashima K, Turner M M, van de Sanden M C M, Vardelle A 2017 J. Phys. D: Appl. Phys. 50 323001Google Scholar

    [8]

    Vanraes P, Bogaerts A 2018 Appl. Phys. Rev. 5 031103Google Scholar

    [9]

    Joshi R P, Thagard S M 2013 Plasma Chem. Plasma Process. 33 1Google Scholar

    [10]

    Sun A, Huo C, Zhuang J 2016 High Voltage 1 74Google Scholar

    [11]

    Lesaint O 2016 J. Phys. D: Appl. Phys. 49 144001Google Scholar

    [12]

    Salazar J N, Bonifaci N, Denat A, Lesaint O 2005 IEEE International Conference on Dielectric Liquids Coimbra, Portugal, 26 June–1 July, 2005 p91

    [13]

    Ceccato P H, Guaitella O, Gloahec Le M R, Rousseau A 2010 J. Phys. D: Appl. Phys. 43 175202Google Scholar

    [14]

    An W, Baumung K, Bluhm H 2007 J. Appl. Phys. 101 053302Google Scholar

    [15]

    Katsuki S, Tanaka K, Fudamoto T, Namihira T, Akiyama H, Bluhm H 2006 Jpn. J. Appl. Phys. 45 239Google Scholar

    [16]

    Wen X Q, Xue X D 2019 AIP Adv. 9 075310Google Scholar

    [17]

    Wen X Q, Xue X D, Liu X H, Li J S, Zhou Y B 2019 J. Appl. Phys. 125 133302Google Scholar

    [18]

    Šimek M, Člupek M, Babický V, Lukeš P, Šunka P 2012 Plasma Sources Sci. Technol. 21 055031Google Scholar

    [19]

    Bruggeman P, Schram D, Gonzalez M A, Rego R, Kong M G, Leys C 2009 Plasma Sources Sci. Technol. 18 025017Google Scholar

    [20]

    https://www.nist.gov/[2021-6-21]

  • 图 1  实验装置示意图

    Fig. 1.  Experimental setup.

    图 2  180 μS/cm水电导率下的放电电压和电流波形以及相机快门信号

    Fig. 2.  Waveforms of the discharge voltage and current at water conductivity of 180 μS/cm, as well as the camera gating signal.

    图 3  水下流光放电时间演化图像 (a)水电导率20 μS/cm, 相邻两幅图像的时间间隔为40 ns; (b)水电导率60 μS/cm, 相邻两幅图像的时间间隔为40 ns; (c)水电导率180 μS/cm, 相邻两幅图像的时间间隔为60 ns. (a)—(c)中CH1图像的曝光时间为100 ns, CH2-CH4图像的曝光时间为20 ns, 图中所标的时间是相对高压脉冲起始点的时间

    Fig. 3.  Light emission images of underwater streamer discharge: (a) 20 μS/cm, 40 ns interval; (b) 60 μS/cm, 40 ns interval; (c) 180 μS/cm, 60 ns interval. The exposure time of the CH1 image in Figure (a)–(c) is 100 ns, and the exposure time of the CH2-CH4 image is 20 ns. The time marked in the Figure 3 is the time to the start of the high-voltage pulse.

    图 4  流光伴生冲击波的分段现象 (a) 20 μS/cm; (b) 50 μS/cm; (c) 200 μS/cm; (d) 400 μS/cm; (e) 540 μS/cm; (f) 800 μS/cm. 图中所标的时间是相对高压脉冲起始点的时间

    Fig. 4.  The segmentation of shock wave chain: (a) 20 μS/cm; (b) 50 μS/cm; (c) 200 μS/cm; (d) 400 μS/cm; (e) 540 μS/cm; (f) 800 μS/cm. The time marked in the figure is the time to the start of the high-voltage pulse.

    图 5  各种水电导率下流光丝的再发光和冲击波串分段出现频度

    Fig. 5.  Appearance rate of the re-illumination and segmentation in shockwave pattern of the streamer filament at different water conductivity

    图 6  不同水电导率条件下流光丝的暂停时间

    Fig. 6.  The pause period of the streamer filament at different water conductivity.

    图 7  不同水电导率下流光丝轴向光强分布

    Fig. 7.  Axial distribution of light intensity of the streamer filament at different water conductivity.

    图 8  流光丝光强衰减到相机分辨水平所需的时间

    Fig. 8.  Time for the light intensity of the streamer filament decaying to the noise level of the camera system.

  • [1]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Processes Polym. 5 503Google Scholar

    [2]

    Locke B R, Thagard S M 2012 Plasma Chem. Plasma Process. 32 875Google Scholar

    [3]

    Chen Q, Li J S, Li Y F 2015 J. Phys. D: Appl. Phys. 48 424005Google Scholar

    [4]

    Sivachandiran L, Khacef A 2017 RSC Adv. 7 1822Google Scholar

    [5]

    Saito N, Bratescu M A, Hashimi K 2018 Jpn. J. Appl. Phys. 57 0102A4Google Scholar

    [6]

    Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G E, Graham W G, Graves D B, Hofman-Caris R C H M, Maric D, Reid J P, Ceriani E, Fernandez Rivas D, Foster J E, Garrick S C, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts E C, Pawlat J, Lj Petrovic Z, Pflieger R, Reuter S, Schram D C, Schröter S, Shiraiwa M, Tarabová B, Tsai P A, Verlet J R R, von Woedtke T, Wilson K R, Yasui K, Zvereva G 2016 Plasma Sources Sci. Technol. 25 053002Google Scholar

    [7]

    Adamovich I, Baalrud S D, Bogaerts A, Bruggeman P J, Cappelli M, Colombo V, Czarnetzki U, Ebert U, Eden J G, Favia P, Graves D B, Hamaguchi S, Hieftje G, Hori M, Kaganovich I D, Kortshagen U, Kushner M J, Mason N J, Mazouffre S, Mededovic Thagard S, Metelmann H R, Mizuno A, Moreau E, Murphy A B, Niemira B A, Oehrlein G S, Petrovic Z L, Pitchford L C, Pu Y K, Rauf S, Sakai O, Samukawa S, Starikovskaia S, Tennyson J, Terashima K, Turner M M, van de Sanden M C M, Vardelle A 2017 J. Phys. D: Appl. Phys. 50 323001Google Scholar

    [8]

    Vanraes P, Bogaerts A 2018 Appl. Phys. Rev. 5 031103Google Scholar

    [9]

    Joshi R P, Thagard S M 2013 Plasma Chem. Plasma Process. 33 1Google Scholar

    [10]

    Sun A, Huo C, Zhuang J 2016 High Voltage 1 74Google Scholar

    [11]

    Lesaint O 2016 J. Phys. D: Appl. Phys. 49 144001Google Scholar

    [12]

    Salazar J N, Bonifaci N, Denat A, Lesaint O 2005 IEEE International Conference on Dielectric Liquids Coimbra, Portugal, 26 June–1 July, 2005 p91

    [13]

    Ceccato P H, Guaitella O, Gloahec Le M R, Rousseau A 2010 J. Phys. D: Appl. Phys. 43 175202Google Scholar

    [14]

    An W, Baumung K, Bluhm H 2007 J. Appl. Phys. 101 053302Google Scholar

    [15]

    Katsuki S, Tanaka K, Fudamoto T, Namihira T, Akiyama H, Bluhm H 2006 Jpn. J. Appl. Phys. 45 239Google Scholar

    [16]

    Wen X Q, Xue X D 2019 AIP Adv. 9 075310Google Scholar

    [17]

    Wen X Q, Xue X D, Liu X H, Li J S, Zhou Y B 2019 J. Appl. Phys. 125 133302Google Scholar

    [18]

    Šimek M, Člupek M, Babický V, Lukeš P, Šunka P 2012 Plasma Sources Sci. Technol. 21 055031Google Scholar

    [19]

    Bruggeman P, Schram D, Gonzalez M A, Rego R, Kong M G, Leys C 2009 Plasma Sources Sci. Technol. 18 025017Google Scholar

    [20]

    https://www.nist.gov/[2021-6-21]

  • [1] 杨双越, 温小琼, 杨元天, 李霄. 水下多针电极微秒脉冲流光放电特性. 物理学报, 2024, 73(7): 075203. doi: 10.7498/aps.73.20231881
    [2] 李琛, 韩若愚, 刘毅, 张晨阳, 欧阳吉庭, 丁卫东. 空气中单丝和丝阵电爆炸特性的比较. 物理学报, 2020, 69(7): 075203. doi: 10.7498/aps.69.20191797
    [3] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化. 基于飞秒激光成丝测量燃烧场温度. 物理学报, 2020, 69(23): 234207. doi: 10.7498/aps.69.20200939
    [4] 李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程. 液体电极上辉光放电丝的运动特性研究. 物理学报, 2018, 67(7): 075201. doi: 10.7498/aps.67.20172205
    [5] 石桓通, 邹晓兵, 赵屾, 朱鑫磊, 王新新. 并联金属丝提高电爆炸丝沉积能量的数值模拟. 物理学报, 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [6] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [7] 叶繁, 薛飞彪, 褚衍运, 司粉妮, 胡青元, 宁家敏, 周林, 杨建伦, 徐荣昆, 李正宏, 许泽平. 双层丝阵Z箍缩电流分配实验研究. 物理学报, 2013, 62(17): 175203. doi: 10.7498/aps.62.175203
    [8] 毕学松, 朱亮, 杨富龙. 丝电爆过程的电流导入机理. 物理学报, 2012, 61(7): 078105. doi: 10.7498/aps.61.078105
    [9] 庞浩, 杨钰, 王赞基. 非晶丝端部磁场效应的模拟. 物理学报, 2010, 59(7): 5049-5054. doi: 10.7498/aps.59.5049
    [10] 施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平. 高压超大电流光电导开关及其击穿特性研究. 物理学报, 2009, 58(2): 1219-1223. doi: 10.7498/aps.58.1219
    [11] 庞 浩, 李 根, 王赞基. 磁环中非晶丝的阻抗效应分析. 物理学报, 2008, 57(11): 7194-7199. doi: 10.7498/aps.57.7194
    [12] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [13] 刘龙平, 赵振杰, 黄灿星, 吴志明, 杨燮龙. 复合结构丝中的电流密度分布和巨磁阻抗效应. 物理学报, 2006, 55(4): 2014-2020. doi: 10.7498/aps.55.2014
    [14] 王必本, 徐幸梓, 张 兵. 等离子体增强热丝CVD生长碳纳米尖端的研究. 物理学报, 2006, 55(2): 941-946. doi: 10.7498/aps.55.941
    [15] 张寒虹, 陈志福. 水中高压放电的二次放电现象. 物理学报, 2001, 50(4): 748-751. doi: 10.7498/aps.50.748
    [16] 魏光普. 非晶硅太阳电池的X射线辐照效应及其低能域光电流光谱观测. 物理学报, 1992, 41(3): 485-490. doi: 10.7498/aps.41.485
    [17] 张连芳, 赵文正, 尚仁成, 潘力, 王世亮, 文克玲, 陈瓞延. 用脉冲电场光电流光谱研究Ne原子的自电离态. 物理学报, 1990, 39(12): 1870-1876. doi: 10.7498/aps.39.1870
    [18] 谢建平, 邢晓正, 李传奇, 朱懋胜, 大园成夫. 高精度丝径测量中的偏振效应. 物理学报, 1989, 38(3): 399-406. doi: 10.7498/aps.38.399
    [19] 贺凯芬. 电子束丝化扰动的孤立波解. 物理学报, 1983, 32(7): 954-959. doi: 10.7498/aps.32.954
    [20] 马远力, 周南波. 钼丝中含氧和氮所引起的内耗峰. 物理学报, 1961, 17(9): 450-452. doi: 10.7498/aps.17.450
计量
  • 文章访问数:  3899
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-09-06
  • 上网日期:  2021-09-15
  • 刊出日期:  2022-01-05

/

返回文章
返回