搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种苯乙烯基喹啉衍生物的稳态和瞬态光电性质

成燕琴 徐娟娟 王有娣 黎卓熹 陈江山

引用本文:
Citation:

一种苯乙烯基喹啉衍生物的稳态和瞬态光电性质

成燕琴, 徐娟娟, 王有娣, 黎卓熹, 陈江山

Steady-state and transient optoelectronic characteristics of styrene-and quinoline-based derivative

Cheng Yan-Qin, Xu Juan-Juan, Wang You-Di, Li Zhuo-Xi, Chen Jiang-Shan
PDF
HTML
导出引用
  • 苯乙烯和喹啉是有机荧光材料的常用官能基团, 已经在有机发光二极管(OLED)中得到了应用. 本文用一种苯乙烯基喹啉衍生物2,2'-(2,5-二甲氧基-1,4-苯二乙烯基)双-8-乙酰氧基喹啉(MPV-AQ)同时作为发光材料和电子传输材料, 研究了它在OLED器件中的稳态和瞬态光电性质. 研究发现, 在基于N,N’-二(萘-1-基)-N,N'-二苯基-联苯胺(NPB)/MPV-AQ的双层OLED中, 电子以Fowler-Nordheim(FN)隧穿的方式从阴极注入到MPV-AQ层, 这与MPV-AQ单电子器件中电子以Richardson-Schottky(RS)热电子发射的注入方式完全不同. 这种电子注入方式的差别, 主要是由于MPV-AQ的电子迁移率较低, 大量空穴在NPB/MPV-AQ界面处形成电荷积累, 使得MPV-AQ层的能带发生了弯曲, 造成阴极一侧的电子隧穿距离减小, 从而导致了FN隧穿的发生. 通过拟合稳态电流-电压特性得到了电子注入势垒为0.23 eV, 通过瞬态电致发光的延迟时间计算得到MPV-AQ的电子迁移率在10–6 cm2/(V·s)数量级, 通过瞬态电致发光的衰减获得了复合系数, 并发现复合系数随电压增大而减小, 与这种发光器件的效率滚降规律一致. 本研究为弄清OLED中载流子的注入、传输和复合等基本物理过程提供了基础, 能够为提高器件性能提供有益的帮助.
    Styrene and quinoline groups are commonly incorporated into the organic fluorescent materials for organic light-emitting diodes (OLEDs). In this work, a type of small molecule derived from styrene and quinoline, with a chemical structure of 2,2'-(2,5-dimethoxy-1,4-phylenedivinylene)bis-8- acetoxyquinoline (MPV-AQ), is employed as the emitter and electron transporting material in the OLEDs, and its optoelectronic characteristics such as charge-carrier injection, transporting and recombination are investigated by the steady-state and transient technologies. It is found that the electron injection from the cathode into the MPV-AQ layer shows the Fowler-Nordheim (FN) tunneling characteristic in the N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB)/MPV-AQ bilayer OLED, which is different from the Richardson-Schottky (RS) thermionic emission in the electron-only device based on the MPV-AQ single-layer. The difference in electron injection is attributed to the bend of energy bands of MPV-AQ in the NPB/MPV-AQ device, which can be caused by the charge accumulation at the NPB/MPV-AQ interface. The accumulated charges should mainly be the holes on the side of NPB layer because the electron mobility of MPV-AQ is much lower than the hole mobility of NPB. Owing to the bending of lowest unoccupied molecular orbital (LUMO) of MPV-AQ, the tunneling distance for electrons is significantly reduced, which is favorable for the FN tunneling. The barrier height for electron injection is calculated to be 0.23 eV by fitting the current-voltage curve of the NPB/MPV-AQ bilayer OLED. And the electron mobility of MPV-AQ is determined by the delay time of transient electroluminescence (EL) and shows field-dependence with the value on the order of 10–6 cm2/(V·s). In addition, the electron-hole recombination coefficient is obtained from the long time component of the temporal decay of the EL intensity, and the coefficient is found to decrease with the applied voltage increasing, which is consistent with the efficiency roll-off in this bilayer OLED. This study may provide a foundation for understanding the electronic processes of carrier injection, transport and recombination in the OLEDs, which is helpful in improving the device performance.
      通信作者: 成燕琴, 10602511@qq.com ; 陈江山, msjschen@scut.edu.cn
    • 基金项目: 广东省教育厅普通高校特色创新类项目(批准号: 2018KTSCX318)、华南理工大学发光材料与器件国家重点实验室(批准号: skllmd-2021-03)资助的课题
      Corresponding author: Cheng Yan-Qin, 10602511@qq.com ; Chen Jiang-Shan, msjschen@scut.edu.cn
    • Funds: Project supported by the Department of Education of Guangdong Province, China (Grant No. 2018KTSCX318) and the State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, China (Grant No. skllmd-2021-03)
    [1]

    Tang C W, VanSlyke S A 1987 Appl. Phys. Lett. 51 913Google Scholar

    [2]

    Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R 2006 Nature 440 908Google Scholar

    [3]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [4]

    Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C 2016 Adv. Mater. 28 6976Google Scholar

    [5]

    Fung M K, Li Y Q, Liao L S 2016 Adv. Mater. 28 10381Google Scholar

    [6]

    Ai X, Evans E W, Dong S Z, Gillett A J, Guo H Q, Chen Y X, Hele T J H, Friend R H, Li F 2018 Nature 563 536Google Scholar

    [7]

    Wu T L, Huang M J, Lin C C, Huang P Y, Chou T Y, Chen-Cheng R W, Lin H W, Liu R S, Cheng C H 2018 Nat. Photonics 12 235Google Scholar

    [8]

    Liu Y C, Li C S, Ren Z J, Yan S K, Bryce M R 2018 Nat. Rev. Mater. 3 18020Google Scholar

    [9]

    Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T 2019 Nat. Photonics 13 678Google Scholar

    [10]

    Chan C Y, Tanaka M, Lee Y T, Wong Y W, Nakanotani H, Hatakeyama T, Adachi C 2021 Nat. Photonics 15 6Google Scholar

    [11]

    Jeon S O, Lee K H, Kim J S, Ihn S G, Chung Y S, Kim J W, Lee H, Kim S, Choi H, Lee J Y 2021 Nat. Photonics 15 9

    [12]

    Xu Y W, Xu P, Hu D H, Ma Y G 2021 Chem. Soc. Rev. 50 1030Google Scholar

    [13]

    Ma D, Hummelgen I A, Jing X B, Hong Z Y, Wang L X, Zhao X J, Wang F S, Karasz F E 2000 J. Appl. Phys. 87 312Google Scholar

    [14]

    Baldo M A, Forrest S R 2001 Phys. Rev. B 64 085201Google Scholar

    [15]

    Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photonics 6 253Google Scholar

    [16]

    Tang X, Cui L S, Li H C, Gillett A J, Auras F, Qu Y K, Zhong C, Jones S T E, Jiang Z Q, Friend R H, Liao L S 2020 Nat. Mater. 19 1332Google Scholar

    [17]

    Lee J, Jeong C, Batagoda T, Coburn C, Thompson M E, Forrest S R 2017 Nat. Commun. 8 9Google Scholar

    [18]

    Ostroverkhova O 2016 Chem. Rev. 116 13279Google Scholar

    [19]

    Matsumura M, Jinde Y, Akai T, Kimura T 1996 Jpn. J. Appl. Phys., Part 1 35 5735Google Scholar

    [20]

    Matsumura M, Akai T, Saito M, Kimura T 1996 J. Appl. Phys. 79 264Google Scholar

    [21]

    Matsumura M, Jinde Y 1998 Appl. Phys. Lett. 73 2872Google Scholar

    [22]

    Koehler M, Roman L S, Inganas O, da Luz M G E 2002 J. Appl. Phys. 92 5575Google Scholar

    [23]

    Crone B K, Davids P S, Campbell I H, Smith D L 2000 J. Appl. Phys. 87 1974Google Scholar

    [24]

    Yang J, Shen J 2000 J. Phys. D:Appl. Phys. 33 1768Google Scholar

    [25]

    Tutis E, Bussac M N, Masenelli B, Carrard M, Zuppiroli L 2001 J. Appl. Phys. 89 430Google Scholar

    [26]

    Cai M, Zhang D, Xu J, Hong X, Zhao C, Song X, Qiu Y, Kaji H, Duan L 2019 ACS Appl. Mater. Interfaces 11 1096Google Scholar

    [27]

    Nabha-Barnea S, Gotleyb D, Yonish A, Shikler R 2021 J. Mater. Chem. C 9 719Google Scholar

    [28]

    Lee J H, Lee S, Yoo S J, Kim K H, Kim J J 2014 Adv. Funct. Mater. 24 4681Google Scholar

    [29]

    Tak Y H, Pommerehne J, Vestweber H, Sander R, Bässler H, Hörhold H H 1996 Appl. Phys. Lett. 69 1291Google Scholar

    [30]

    Weichsel C, Burtone L, Reineke S, Hintschich S I, Gather M C, Leo K, Lüssem B 2012 Phys. Rev. B 86 075204Google Scholar

    [31]

    Liu R, Gan Z, Shinar R, Shinar J 2011 Phys. Rev. B 83 245302Google Scholar

    [32]

    Barth S, Muller P, Riel H, Seidler P F, Riess W, Vestweber H, Bassler H 2001 J. Appl. Phys. 89 3711Google Scholar

    [33]

    Kalinowski J, Camaioni N, Di Marco P, Fattori V, Martelli A 1998 Appl. Phys. Lett. 72 513Google Scholar

    [34]

    Grüne J, Bunzmann N, Meinecke M, Dyakonov V, Sperlich A 2020 J. Phys. Chem. C 124 25667Google Scholar

    [35]

    Dong Q, Mendes J, Lei L, Seyitliyev D, Zhu L, He S, Gundogdu K, So F 2020 ACS Appl. Mater. Interfaces 12 48845Google Scholar

    [36]

    Yuan Q, Wang T, Wang R, Zhao J, Zhang H, Ji W 2020 Opt. Lett. 45 6370Google Scholar

    [37]

    Elkhouly K, Gehlhaar R, Genoe J, Heremans P, Qiu W 2020 Adv. Opt. Mater. 8 2000941Google Scholar

    [38]

    Xu M, Peng Q, Zou W, Gu L, Xu L, Cheng L, He Y, Yang M, Wang N, Huang W, Wang J 2019 Appl. Phys. Lett. 115 041102Google Scholar

    [39]

    Liang F, Chen J, Cheng Y, Wang L, Ma D, Jing X, Wang F 2003 J. Mater. Chem. 13 1392Google Scholar

    [40]

    Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: Wiley)

  • 图 1  MPV-AQ和NPB的分子结构式

    Fig. 1.  Molecular structures of MPV-AQ and NPB.

    图 2  单载流子器件的电流-电压特性 (a) J-V曲线; (b) ln$J\text{-}F^{1/2}$曲线

    Fig. 2.  Characteristics of current density and voltage in the electron-only and hole-only devices: (a) J-V curves; (b) ln$J\text{-}F^{1/2}$ curves

    图 3  (a) 不同MPV-AQ厚度时双层OLED的电流-电压特性; (b) 外加电压与MPV-AQ厚度的关系; (c) NPB和MPV-AQ层中平均电场(FhFe)与电流的关系; (d) 双层OLED的能级结构示意图

    Fig. 3.  (a) Characteristics of current density and voltage in the bilayer OLEDs with different MPV-AQ thickness; (b) relationship of applied voltage and MPV-AQ thickness; (c) relationship of average electric field (Fh and Fe) and current density in the NPB and MPV-AQ layers; (d) diagram of energy levels in the bilayer OLEDs.

    图 4  NPB和MPV-AQ层中电流与电场(FhFe)的关系 (a), (c) lnJ-F1/2曲线; (b), (d) lnJ-F–1曲线

    Fig. 4.  Relationship of current density and electric field in the NPB and MPV-AQ layers (Fh and Fe): (a), (c) lnJ-F1/2 curves; (b), (d) lnJ-F–1 curves.

    图 5  (a) 双层OLED中瞬态EL随电压的变化, 其中NPB和MPV-AQ的厚度都等于50 nm; (b) MPV-AQ电子迁移率与电场平方根的关系

    Fig. 5.  (a) Voltage dependence of the transient EL from the bilayer OLED with the same thickness of 50 nm for NPB and MPV-AQ; (b) electron mobility of MPV-AQ as a function of the square root of electric field.

    图 6  (a) 脉冲电压15 V时(ΦEL)–1/2与时间的关系, 插图为对应EL的衰减曲线; (b) 不同电压下的复合系数, 插图为不同电压下OLED的外量子效率

    Fig. 6.  (a) EL decay at the falling edge of a 15 V pulse plotted in (ΦEL)–1/2 vs time scale. The inset shows the corresponding EL decay curve; (b) dependence of recombination coefficient on the voltage. The insert shows the external quantum efficiencies (EQEs) at various voltages in the OLED.

  • [1]

    Tang C W, VanSlyke S A 1987 Appl. Phys. Lett. 51 913Google Scholar

    [2]

    Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R 2006 Nature 440 908Google Scholar

    [3]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [4]

    Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C 2016 Adv. Mater. 28 6976Google Scholar

    [5]

    Fung M K, Li Y Q, Liao L S 2016 Adv. Mater. 28 10381Google Scholar

    [6]

    Ai X, Evans E W, Dong S Z, Gillett A J, Guo H Q, Chen Y X, Hele T J H, Friend R H, Li F 2018 Nature 563 536Google Scholar

    [7]

    Wu T L, Huang M J, Lin C C, Huang P Y, Chou T Y, Chen-Cheng R W, Lin H W, Liu R S, Cheng C H 2018 Nat. Photonics 12 235Google Scholar

    [8]

    Liu Y C, Li C S, Ren Z J, Yan S K, Bryce M R 2018 Nat. Rev. Mater. 3 18020Google Scholar

    [9]

    Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T 2019 Nat. Photonics 13 678Google Scholar

    [10]

    Chan C Y, Tanaka M, Lee Y T, Wong Y W, Nakanotani H, Hatakeyama T, Adachi C 2021 Nat. Photonics 15 6Google Scholar

    [11]

    Jeon S O, Lee K H, Kim J S, Ihn S G, Chung Y S, Kim J W, Lee H, Kim S, Choi H, Lee J Y 2021 Nat. Photonics 15 9

    [12]

    Xu Y W, Xu P, Hu D H, Ma Y G 2021 Chem. Soc. Rev. 50 1030Google Scholar

    [13]

    Ma D, Hummelgen I A, Jing X B, Hong Z Y, Wang L X, Zhao X J, Wang F S, Karasz F E 2000 J. Appl. Phys. 87 312Google Scholar

    [14]

    Baldo M A, Forrest S R 2001 Phys. Rev. B 64 085201Google Scholar

    [15]

    Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photonics 6 253Google Scholar

    [16]

    Tang X, Cui L S, Li H C, Gillett A J, Auras F, Qu Y K, Zhong C, Jones S T E, Jiang Z Q, Friend R H, Liao L S 2020 Nat. Mater. 19 1332Google Scholar

    [17]

    Lee J, Jeong C, Batagoda T, Coburn C, Thompson M E, Forrest S R 2017 Nat. Commun. 8 9Google Scholar

    [18]

    Ostroverkhova O 2016 Chem. Rev. 116 13279Google Scholar

    [19]

    Matsumura M, Jinde Y, Akai T, Kimura T 1996 Jpn. J. Appl. Phys., Part 1 35 5735Google Scholar

    [20]

    Matsumura M, Akai T, Saito M, Kimura T 1996 J. Appl. Phys. 79 264Google Scholar

    [21]

    Matsumura M, Jinde Y 1998 Appl. Phys. Lett. 73 2872Google Scholar

    [22]

    Koehler M, Roman L S, Inganas O, da Luz M G E 2002 J. Appl. Phys. 92 5575Google Scholar

    [23]

    Crone B K, Davids P S, Campbell I H, Smith D L 2000 J. Appl. Phys. 87 1974Google Scholar

    [24]

    Yang J, Shen J 2000 J. Phys. D:Appl. Phys. 33 1768Google Scholar

    [25]

    Tutis E, Bussac M N, Masenelli B, Carrard M, Zuppiroli L 2001 J. Appl. Phys. 89 430Google Scholar

    [26]

    Cai M, Zhang D, Xu J, Hong X, Zhao C, Song X, Qiu Y, Kaji H, Duan L 2019 ACS Appl. Mater. Interfaces 11 1096Google Scholar

    [27]

    Nabha-Barnea S, Gotleyb D, Yonish A, Shikler R 2021 J. Mater. Chem. C 9 719Google Scholar

    [28]

    Lee J H, Lee S, Yoo S J, Kim K H, Kim J J 2014 Adv. Funct. Mater. 24 4681Google Scholar

    [29]

    Tak Y H, Pommerehne J, Vestweber H, Sander R, Bässler H, Hörhold H H 1996 Appl. Phys. Lett. 69 1291Google Scholar

    [30]

    Weichsel C, Burtone L, Reineke S, Hintschich S I, Gather M C, Leo K, Lüssem B 2012 Phys. Rev. B 86 075204Google Scholar

    [31]

    Liu R, Gan Z, Shinar R, Shinar J 2011 Phys. Rev. B 83 245302Google Scholar

    [32]

    Barth S, Muller P, Riel H, Seidler P F, Riess W, Vestweber H, Bassler H 2001 J. Appl. Phys. 89 3711Google Scholar

    [33]

    Kalinowski J, Camaioni N, Di Marco P, Fattori V, Martelli A 1998 Appl. Phys. Lett. 72 513Google Scholar

    [34]

    Grüne J, Bunzmann N, Meinecke M, Dyakonov V, Sperlich A 2020 J. Phys. Chem. C 124 25667Google Scholar

    [35]

    Dong Q, Mendes J, Lei L, Seyitliyev D, Zhu L, He S, Gundogdu K, So F 2020 ACS Appl. Mater. Interfaces 12 48845Google Scholar

    [36]

    Yuan Q, Wang T, Wang R, Zhao J, Zhang H, Ji W 2020 Opt. Lett. 45 6370Google Scholar

    [37]

    Elkhouly K, Gehlhaar R, Genoe J, Heremans P, Qiu W 2020 Adv. Opt. Mater. 8 2000941Google Scholar

    [38]

    Xu M, Peng Q, Zou W, Gu L, Xu L, Cheng L, He Y, Yang M, Wang N, Huang W, Wang J 2019 Appl. Phys. Lett. 115 041102Google Scholar

    [39]

    Liang F, Chen J, Cheng Y, Wang L, Ma D, Jing X, Wang F 2003 J. Mater. Chem. 13 1392Google Scholar

    [40]

    Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: Wiley)

  • [1] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性. 物理学报, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [2] 彭腾, 王辉耀, 赵茜, 刘俊宏, 汪波, 王晶晶, 周银琼, 张可怡, 杨俊, 熊祖洪. 电子注入层迁移率对Rubrene/C60基发光二极管半带隙开启电压的调控. 物理学报, 2024, 73(21): 217202. doi: 10.7498/aps.73.20240864
    [3] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究. 物理学报, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [4] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程. 物理学报, 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [5] 保希, 关云霞, 李万娇, 宋家一, 陈丽佳, 徐爽, 彭柯敖, 牛连斌. 载流子阶梯效应调控有机发光二极管三线态激子的解离和散射. 物理学报, 2023, 72(21): 217101. doi: 10.7498/aps.72.20230851
    [6] 成燕琴, 徐娟娟, 王有娣, 黎卓熹, 陈江山. 一种苯乙烯基喹啉衍生物的稳态和瞬态光电性质研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211171
    [7] 刘萌娇, 张新稳, 王炯, 秦雅博, 陈月花, 黄维. 非周期微纳结构增强有机发光二极管光耦合输出的研究进展. 物理学报, 2018, 67(20): 207801. doi: 10.7498/aps.67.20181209
    [8] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性. 物理学报, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [9] 黄迪, 徐征, 赵谡玲. 使用PTB7作为阳极修饰层提高有机发光二极管的性能. 物理学报, 2014, 63(2): 027301. doi: 10.7498/aps.63.027301
    [10] 刘佰全, 兰林锋, 邹建华, 彭俊彪. 具有新型双空穴注入层的有机发光二极管. 物理学报, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [11] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪. 有机发光器件的磁电导效应. 物理学报, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [12] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应. 物理学报, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [13] 刘南柳, 艾娜, 胡典钢, 余树福, 彭俊彪, 曹镛, 王坚. 旋涂方式对有机发光显示屏发光均匀性及性能的影响. 物理学报, 2011, 60(8): 087805. doi: 10.7498/aps.60.087805
    [14] 杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 有机发光二极管光取出技术研究进展. 物理学报, 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [15] 张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪. 基于Alq3的有机发光二极管的磁电导效应. 物理学报, 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [16] 张秀龙, 杨盛谊, 娄志东, 侯延冰. 有机电致发光器件的动态电学特性. 物理学报, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [17] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管. 物理学报, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [18] 黄文波, 彭俊彪. 高分子发光二极管载流子注入过程研究. 物理学报, 2007, 56(5): 2974-2978. doi: 10.7498/aps.56.2974
    [19] 许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华. 有机层界面对双层有机发光二极管复合效率的影响. 物理学报, 2004, 53(1): 286-290. doi: 10.7498/aps.53.286
    [20] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响. 物理学报, 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
计量
  • 文章访问数:  4612
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 修回日期:  2021-09-07
  • 上网日期:  2021-12-27
  • 刊出日期:  2022-01-05

/

返回文章
返回