搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺陷对铁单质薄膜磁致伸缩与磁矩演化的影响

张硕 龙连春 刘静毅 杨洋

引用本文:
Citation:

缺陷对铁单质薄膜磁致伸缩与磁矩演化的影响

张硕, 龙连春, 刘静毅, 杨洋

Effect of defects on magnetostriction and magnetic moment evolution of iron thin films

Zhang Shuo, Long Lian-Chun, Liu Jing-Yi, Yang Yang
PDF
HTML
导出引用
  • 磁致伸缩材料在传感、控制及能量与信息转换等领域应用前景广阔, 此类材料的性能提升及工程应用已成为研究热点, 但材料在制备与使用中不可避免会出现缺陷. 本文以常用的铁磁性材料铁单质为研究对象, 采用分子动力学方法分别建立无缺陷、孔洞缺陷与裂纹缺陷的铁单质磁致伸缩结构模型, 分析了缺陷形式对铁单质薄膜磁致伸缩行为的影响, 并从微观原子磁矩角度解释缺陷对磁致伸缩行为的影响机理. 结果表明: 缺陷会对其周围的原子磁矩产生影响, 从而影响铁单质薄膜磁致伸缩, 其中孔洞形缺陷对磁致伸缩的影响较小, 裂纹形缺陷对磁致伸缩的影响较大. 裂纹的方向会影响铁单质薄膜的磁致伸缩, 与磁化方向平行的裂纹会降低材料在磁化方向上由初始状态至磁化达到饱和的最大磁致伸缩量; 与磁化方向垂直的裂纹会提高材料在磁化方向上由初始状态至磁化达到饱和的最大磁致伸缩量.
    Magnetostrictive materials have broad application prospects in sensing, control, energy conversion, and information conversion. The improving of the performances and applications of such materials has become a research hotspot, but defects will inevitably appear in the preparation and use of materials. In this study, the magnetostrictive structure model of iron elemental material with no defect or hole defect or crack defect is established by the molecular dynamics method. The influences of different defects on the magnetostrictive behavior of iron thin films are analyzed, and the mechanism of the influence of defects on the magnetostrictive behavior is depicted from the perspective of atomic magnetic moment. The results show that the films with 60 × 2 × 1 defects in the center are the easiest to reach saturation magnetostriction, and the magnetostriction is the least after reaching saturation, with respect to the films without defects. The films with 10 × 10 × 1 and 2 × 60 × 1 defects in the center require a larger magnetic field to approach to saturation, and the magnetostriction of the film with 2 × 60 × 1 defects in the center reaches a maximum value after saturation. This is because the defects will affect the magnetic moment of the surrounding atoms and make them deflect to the direction parallel to the defects, thus affecting the magnetostriction of the iron thin film. Among them, the hole defects have less influence on the magnetostriction, while the crack defects have stronger influence on the magnetostriction. The direction of the crack also has an effect on the magnetostriction of Fe thin film. When the crack is parallel to the direction of magnetization, the maximum magnetostriction of the film in the direction of magnetization from the initial state to the saturation of magnetization will decrease. When the crack is perpendicular to the direction of magnetization, the maximum magnetostriction of the film in the direction of magnetization from the initial state to the saturation of magnetization will increase. These results suggest that the defects affect the magnetostriction of the model as a whole during magnetization by affecting the initial magnetic moment orientation of the surrounding atoms.
      通信作者: 龙连春, longlc@bjut.edu.cn ; 杨洋, yang.yang@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB0703500)资助的课题
      Corresponding author: Long Lian-Chun, longlc@bjut.edu.cn ; Yang Yang, yang.yang@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB0703500)
    [1]

    Makarova L A, Alekhina Y A, Isaev D A, Khairullin M F, Perov N S 2021 J. Phys. D-Appl. Phys. 54 15003Google Scholar

    [2]

    Garcia M H, Barrera D, Amat R, Kurlyandskaya G V, Sales S 2016 Measurement 80 201Google Scholar

    [3]

    Pei H F, Jing J H, Zhang S Q 2020 Measurement 151 107172Google Scholar

    [4]

    Yu G L, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q, Zhang H W 2013 Chin. Phys. B 22 077504Google Scholar

    [5]

    周勇, 李纯健, 潘昱融 2018 物理学报 67 077702Google Scholar

    Zhou Y, Li C J, Pan Y R 2018 Acta Phys. Sin. 67 077702Google Scholar

    [6]

    苏三庆, 刘馨为, 王威, 左付亮, 邓瑞泽, 秦彦龙 2020 工程科学学报 42 1557Google Scholar

    Su S Q, Liu X W, Wang W, Zuo F L, Deng R Z, Qin Y L 2020 Chin. J. Eng. 42 1557Google Scholar

    [7]

    Ren W P, Xu K, Dixon S, Zhang C 2019 NDT E Int. 101 34Google Scholar

    [8]

    M'Zali N, Martin F, Aydin U, Belahcen A, Benabou A, Henneron T 2020 J. Magn. Magn. Mater. 500 166299Google Scholar

    [9]

    时朋朋, 郝帅 2021 物理学报 70 034101Google Scholar

    Shi P P, Hao S 2021 Acta Phys. Sin. 70 034101Google Scholar

    [10]

    Zhao B X, Yao K, Wu L B, Li X L, Wang Y S 2020 Appl. Sci. -Basel 10 7083Google Scholar

    [11]

    Dubov A A 1997 Met. Sci. Heat Treat. 39 401Google Scholar

    [12]

    Wang P, Zhang Y, Yao E T, Mi Y, Zheng Y, Tang C L 2021 Measurement 168 108187Google Scholar

    [13]

    Bao S, Gu Y B, Fu M L, Zhang D, Hu S N 2017 J. Magn. Magn. Mater. 423 191Google Scholar

    [14]

    Zhang J, Jin W L, Mao J H, Xia J, Fan W J 2020 Constr. Build. Mater. 239 117885Google Scholar

    [15]

    宋凯, 任吉林, 任尚坤, 唐继红 2007 无损检测 29 312Google Scholar

    Song K, Ren J L, Ren S K, Tang J H 2007 Nondestruct. Test. 29 312Google Scholar

    [16]

    张卫民, 刘红光, 孙海涛 2004 北京理工大学学报 24 571Google Scholar

    Zhang W M, Liu H G, Sun H T 2004 Trans. Beijing Inst. Technol. 24 571Google Scholar

    [17]

    李川, 刘敬华, 陈立彪, 蒋成保, 徐惠彬 2011 物理学报 60 097505Google Scholar

    Li C, Liu J H, Chen L B, Jiang C B, Xu H B 2011 Acta Phys. Sin. 60 097505Google Scholar

    [18]

    Kharel P, Talebi S, Ramachandran B, Dixit A, Naik V M, Sahana M B, Sudakar C, Naik R, Rao M S R, Lawes G 2009 J. Phys. -Condes. Matter. 21 36001Google Scholar

    [19]

    张辉, 曾德长 2010 物理学报 59 2808Google Scholar

    Zhang H, Zeng D C 2010 Acta Phys. Sin. 59 2808Google Scholar

    [20]

    Suzuki S, Kawamata T, Simura R, Asano S, Fujieda S, Umetsu R Y, Fujita M, Imafuku M, Kumagai T, Fukuda T 2019 Mater. Trans. 60 2235Google Scholar

    [21]

    Tranchida J, Plimpton S J, Thibaudeau P, Thompson, A P 2018 J. Comput. Phys. 372 406Google Scholar

    [22]

    Jeong J, Goremychkin E A, Guidi T, Nakajima K, Jeon G S, Kim S A, Furukawa S, Kim Y B, Lee S, Kiryukhin V, Cheong S W, Park J G 2012 Phys. Rev. Lett. 108 077202Google Scholar

    [23]

    Kvashnin Y O, Cardias R, Szilva A, Di Marco I, Katsnelson M I, Lichtenstein A I, Nordstrom L, Klautau A B, Eriksson O 2016 Phys. Rev. Lett. 116 217202Google Scholar

  • 图 1  模型初始磁化构型 (a)无缺陷; (b)中心10 × 10 × 1缺陷; (c)中心60 × 2 × 1缺陷; (d)中心2 × 60 × 1缺陷

    Fig. 1.  Initial magnetized configuration diagram of the model: (a) No defect; (b) 10 × 10 × 1 defect in the center; (c) 60 × 2 × 1 defect in the center; (d) 2 × 60 × 1 defect in the center.

    图 2  不同缺陷模型在x方向上磁致伸缩应变

    Fig. 2.  Magnetostrictive strain in the x direction for different defect models.

    图 3  不同缺陷模型在y方向上磁致伸缩应变

    Fig. 3.  Magnetostrictive strain in the y direction for different defect models.

    图 4  无缺陷铁单质磁化构型演化图 (a) 0.025Hm; (b) 0.0625Hm; (c) 0.375Hm; (d) 1Hm

    Fig. 4.  Evolution of magnetization structure in iron film without defect: (a) 0.025Hm; (b) 0.0625Hm; (c) 0.375Hm; (d) 1Hm.

    图 5  中心10×10×1缺陷铁单质磁化构型演化 (a) 0.025Hm; (b) 0.0625Hm; (c) 0.375Hm; (d) 1Hm

    Fig. 5.  Evolution of magnetization structure in iron film with 10 × 10 × 1 defect: (a) 0.025Hm; (b) 0.0625Hm; (c) 0.375Hm; (d) 1Hm.

    图 6  60 × 2 × 1缺陷铁单质磁化构型演化图  (a) 0.025Hm; (b) 0.0625Hm; (c) 0.375Hm; (d) 1Hm

    Fig. 6.  Evolution of magnetization structure in iron film with 60 × 2 × 1 defect: (a) 0.025Hm; (b) 0.0625Hm; (c) 0.375Hm; (d) 1Hm.

    图 7  2 × 60 × 1缺陷铁单质磁化构型演化图  (a) 0.025Hm; (b) 0.0625Hm; (c) 0.375Hm; (d) 1Hm

    Fig. 7.  Evolution of magnetization structure in iron film with 2 × 60 × 1 defect: (a) 0.025Hm; (b) 0.0625Hm; (c) 0.375Hm; (d) 1Hm.

  • [1]

    Makarova L A, Alekhina Y A, Isaev D A, Khairullin M F, Perov N S 2021 J. Phys. D-Appl. Phys. 54 15003Google Scholar

    [2]

    Garcia M H, Barrera D, Amat R, Kurlyandskaya G V, Sales S 2016 Measurement 80 201Google Scholar

    [3]

    Pei H F, Jing J H, Zhang S Q 2020 Measurement 151 107172Google Scholar

    [4]

    Yu G L, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q, Zhang H W 2013 Chin. Phys. B 22 077504Google Scholar

    [5]

    周勇, 李纯健, 潘昱融 2018 物理学报 67 077702Google Scholar

    Zhou Y, Li C J, Pan Y R 2018 Acta Phys. Sin. 67 077702Google Scholar

    [6]

    苏三庆, 刘馨为, 王威, 左付亮, 邓瑞泽, 秦彦龙 2020 工程科学学报 42 1557Google Scholar

    Su S Q, Liu X W, Wang W, Zuo F L, Deng R Z, Qin Y L 2020 Chin. J. Eng. 42 1557Google Scholar

    [7]

    Ren W P, Xu K, Dixon S, Zhang C 2019 NDT E Int. 101 34Google Scholar

    [8]

    M'Zali N, Martin F, Aydin U, Belahcen A, Benabou A, Henneron T 2020 J. Magn. Magn. Mater. 500 166299Google Scholar

    [9]

    时朋朋, 郝帅 2021 物理学报 70 034101Google Scholar

    Shi P P, Hao S 2021 Acta Phys. Sin. 70 034101Google Scholar

    [10]

    Zhao B X, Yao K, Wu L B, Li X L, Wang Y S 2020 Appl. Sci. -Basel 10 7083Google Scholar

    [11]

    Dubov A A 1997 Met. Sci. Heat Treat. 39 401Google Scholar

    [12]

    Wang P, Zhang Y, Yao E T, Mi Y, Zheng Y, Tang C L 2021 Measurement 168 108187Google Scholar

    [13]

    Bao S, Gu Y B, Fu M L, Zhang D, Hu S N 2017 J. Magn. Magn. Mater. 423 191Google Scholar

    [14]

    Zhang J, Jin W L, Mao J H, Xia J, Fan W J 2020 Constr. Build. Mater. 239 117885Google Scholar

    [15]

    宋凯, 任吉林, 任尚坤, 唐继红 2007 无损检测 29 312Google Scholar

    Song K, Ren J L, Ren S K, Tang J H 2007 Nondestruct. Test. 29 312Google Scholar

    [16]

    张卫民, 刘红光, 孙海涛 2004 北京理工大学学报 24 571Google Scholar

    Zhang W M, Liu H G, Sun H T 2004 Trans. Beijing Inst. Technol. 24 571Google Scholar

    [17]

    李川, 刘敬华, 陈立彪, 蒋成保, 徐惠彬 2011 物理学报 60 097505Google Scholar

    Li C, Liu J H, Chen L B, Jiang C B, Xu H B 2011 Acta Phys. Sin. 60 097505Google Scholar

    [18]

    Kharel P, Talebi S, Ramachandran B, Dixit A, Naik V M, Sahana M B, Sudakar C, Naik R, Rao M S R, Lawes G 2009 J. Phys. -Condes. Matter. 21 36001Google Scholar

    [19]

    张辉, 曾德长 2010 物理学报 59 2808Google Scholar

    Zhang H, Zeng D C 2010 Acta Phys. Sin. 59 2808Google Scholar

    [20]

    Suzuki S, Kawamata T, Simura R, Asano S, Fujieda S, Umetsu R Y, Fujita M, Imafuku M, Kumagai T, Fukuda T 2019 Mater. Trans. 60 2235Google Scholar

    [21]

    Tranchida J, Plimpton S J, Thibaudeau P, Thompson, A P 2018 J. Comput. Phys. 372 406Google Scholar

    [22]

    Jeong J, Goremychkin E A, Guidi T, Nakajima K, Jeon G S, Kim S A, Furukawa S, Kim Y B, Lee S, Kiryukhin V, Cheong S W, Park J G 2012 Phys. Rev. Lett. 108 077202Google Scholar

    [23]

    Kvashnin Y O, Cardias R, Szilva A, Di Marco I, Katsnelson M I, Lichtenstein A I, Nordstrom L, Klautau A B, Eriksson O 2016 Phys. Rev. Lett. 116 217202Google Scholar

  • [1] 何安, 薛存. 缺陷调控临界温度梯度超导膜的磁通整流反转效应. 物理学报, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [2] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211177
    [3] 王磊, 张冉冉, 方炜. 含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究. 物理学报, 2019, 68(16): 166101. doi: 10.7498/aps.68.20190594
    [4] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [5] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [6] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响. 物理学报, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [7] 朱金荣, 范吕超, 苏垣昌, 胡经国. 温度、缺陷对磁畴壁动力学行为的影响. 物理学报, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [8] 张兆慧, 李海鹏, 韩奎. 纳米摩擦中极性有机分子超薄膜的结构、对称性及能量机理. 物理学报, 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [9] 宋成粉, 樊沁娜, 李蔚, 刘永利, 张林. TiAl合金薄膜在冷却过程中结构变化的原子尺度计算研究. 物理学报, 2011, 60(6): 063104. doi: 10.7498/aps.60.063104
    [10] 唐冬妮, 唐国宁. 无扩散功能的缺陷对螺旋波动力学行为的影响. 物理学报, 2010, 59(4): 2319-2325. doi: 10.7498/aps.59.2319
    [11] 仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究. 物理学报, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [12] 方 方, 郑时有, 周广有, 陈国荣, 孙大林. 氢致LaMg2Ni合金薄膜的光电性能变化. 物理学报, 2008, 57(6): 3813-3817. doi: 10.7498/aps.57.3813
    [13] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [14] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [15] 张红鹰, 吴师岗. 飞秒激光作用下薄膜破坏的力学过程. 物理学报, 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [16] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [17] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [18] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程. 物理学报, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [19] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响. 物理学报, 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [20] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
计量
  • 文章访问数:  5158
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 修回日期:  2021-09-08
  • 上网日期:  2021-12-25
  • 刊出日期:  2022-01-05

/

返回文章
返回