搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多能场复合电沉积对Al2O3-Co复合薄膜物性影响研究

岂云开 杨淑敏 李欣 徐芹 顾建军

引用本文:
Citation:

多能场复合电沉积对Al2O3-Co复合薄膜物性影响研究

岂云开, 杨淑敏, 李欣, 徐芹, 顾建军

Effects of multi-energy field electrodeposition on properties of Al2O3-Co composite films

Qi Yun-Kai, Yang Shu-Min, Li Xin, Xu Qin, Gu Jian-Jun
PDF
HTML
导出引用
  • 采用多能场复合微细电沉积加工技术, 制备了微观结构渐变的多彩结构色磁性Al2O3-Co复合薄膜. 在沉积电场和与之垂直的偏转电场作用下, 复合薄膜的微观结构、光学特性和磁性沿偏转电场方向呈现渐变特征. 通过建立微观结构等效模型, 理论分析了复合薄膜微观结构变化机理. 通过软件仿真定量分析了沿偏转电场方向Co离子沉积电流密度分布规律, 仿真结果与理论研究和实验结果相吻合. 研究发现, 采用多能场复合的微细电沉积加工技术可以从微观角度调控复合薄膜微区结构, 实现对薄膜微区磁学和光学特性的精细调控.
    The multi-energy composite field micro-electrodeposition processing technology is used to prepare colorful structural coloration magnetic Al2O3-Co composite films each with a gradual microstructure. Under the action of the deposition electric field and the deflection electric field perpendicular to it, the microstructure, optical properties and magnetic properties of the composite films show gradual characteristics along the direction of the deflection electric field. By establishing an equivalent model of the microstructure, the mechanism of the microstructure change of the composite film is theoretically analyzed. Through software simulation, the distribution of Co ion deposition current density along the direction of the deflection electric field is quantitatively analyzed. The simulation results are consistent with the theoretical and experimental results. Through this study, we find that the micro-electrodeposition processing technology with using multi-energy field composite can control the micro-domain structure of the composite film from a microscopic point of view, and achieve the fine control of the magnetic and optical properties of the film micro-domain.
      通信作者: 顾建军, jjungu@126.com
    • 基金项目: 河北省自然科学基金(批准号: A2012101001, A2019202190)和河北省高层次人才资助项目(批准号: A2016002040)资助的课题
      Corresponding author: Gu Jian-Jun, jjungu@126.com
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant Nos. A2012101001, A2019202190) and the High-level TalentsFunded Projects of Hebei Province, China (Grant No. A2016002040).
    [1]

    Domagalski J T, Xifre-Perez E, Tabrizi M A, Ferre-Borrull J, Marsal L F 2021 J. Colloid Interface Sci. 584 15

    [2]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

    [3]

    Zhang K X, Yao C B, Wen X, Li Q H, Sun W J 2018 RSC Adv. 46 8

    [4]

    Nie M, Sun H, Gao Z D, Li Q, Xue Z H, Luo J, Liao J M 2020 Electrochem. Commun. 115 106719Google Scholar

    [5]

    Gu J J, Yang S M, Dong M Y, Qi Y K 2017 J. Alloys Compd. 728 25

    [6]

    Yang S M, Han W, Li H T, Qi Y K, Gu J J 2015 J. Electrochem. Soc. 162 E123Google Scholar

    [7]

    梁玲玲, 赵艳, 冯超 2020 物理学报 69 065201Google Scholar

    Liang L L, Zhao Y, Feng C 2020 Acta Phys. Sin. 69 065201Google Scholar

    [8]

    Yue Y, Coburn K, Reed B, Liang H 2018 J. Appl. Electrochem. 48 3

    [9]

    Ali H O 2017 Int. J. Surf. Eng. Coat. 95 6

    [10]

    Mahmoud A T, Josep F B, Lluis F M 2020 Microchim. Acta 187 230Google Scholar

    [11]

    Sergey E, Kushnir, Kirill S, Napolskii 2018 Mater. Des. 144 15

    [12]

    Pankaj K, Josep F B, Lluis F M 2020 Adv. Mater. Interfaces 7 22

    [13]

    Kirill S N, Alexey A N, Sergey E K 2020 Opt. Mater. 109 110317Google Scholar

    [14]

    Mahmoud A T, Josep F B, Lluis F M 2020 Sci. Rep. 10 2356Google Scholar

    [15]

    Mo R J, He L, Yan X M, Su T T, Zhou C X, Wang Z, Hong P Z 2018 Electrochem. Commun. 95 9Google Scholar

    [16]

    Liudmyla R, Kateryna K, Volodymyr O, Menglei C 2021 Ukr. Chem. Journ. 86 5

    [17]

    Li X C, Zhang T C, Gao P C 2018 Langmuir 34 49

    [18]

    Liu S X, Tian J L, Zhang W 2021 Nanotechnology 32 222001Google Scholar

    [19]

    Kapoor S, Ahmad H, Julien C M, Islam S S 2020 Appl. Surf. Sci. 512 145654Google Scholar

    [20]

    Sistani M, Staudinger P, Greil J, Holzbauer M, Detz H, Bertagnolli E, Lugstein A 2017 Nano Lett. 17 8Google Scholar

    [21]

    Fang J, Chen S, Vandenberghe W G, Fischetti M V 2017 IEEE Trans. Electron Devices 64 2758Google Scholar

    [22]

    杨淑敏, 韩伟, 顾建军, 李海涛, 岂云开 2015 物理学报 64 076102Google Scholar

    Yang S M, Han W, Gu J J, Li H T, Qi Y K 2015 Acta Phys. Sin. 64 076102Google Scholar

    [23]

    Ruiz-Clavijo A, Caballero-Calero O, Martín-González M 2021 Nanoscale 13 4

  • 图 1  多能场复合电沉积装置示意图 (a) 结构示意图; (b) 电沉积示意图

    Fig. 1.  Schematic diagram of electrodeposition device with multienergy composite field. (a) Structure schematic diagram; (b) electrodeposition diagram.

    图 2  氧化铝薄膜和Al2O3-Co复合薄膜数码照片及XRD图谱 (a) 氧化电压20 V, 氧化时间11 min条件下制备的氧化铝薄膜数码照片; (b) 沉积电压12 V, 沉积时间60 s, 偏转电场120 V/m条件下制备的Al2O3-Co复合薄膜数码照片; (c) 图2(b) 所示薄膜的XRD图谱

    Fig. 2.  Digital photos of alumina film and Al2O3-Co composite film and XRD diffraction pattern: (a) Digital photo of alumina film oxidized with a voltage of 20 V for 11 min; (b) digital photo of Al2O3-Co composite film deposited with a voltage of 12 V for 60 s and deflection field of 120 V/m; (c) XRD diffraction pattern of Al2O3-Co composite film shown in Fig. 2(b).

    图 3  Al2O3-Co复合薄膜SEM表面和截面照片 (a)−(c)分别对应图2(b)所示薄膜A到C的位置.

    Fig. 3.  SEM surface and cross-sectional images of Al2O3-Co composite film: (a)−(c) corresponding to positions A to C in Fig. 2(b).

    图 4  Al2O3-Co复合薄膜的结构模型 (a)−(c)分别对应图2(b)所示薄膜的A到C的位置

    Fig. 4.  The structural models of Al2O3-Co composite film: (a)−(c) corresponding to positions A to C in Fig. 2(b).

    图 5  图2(b)所示Al2O3-Co复合薄膜反射光谱

    Fig. 5.  The reflection spectrum of Al2O3-Co composite film shown in Fig.2 (b).

    图 6  Al2O3-Co复合薄膜沿径向电流密度分布曲线

    Fig. 6.  The curve of deposition current density along the radial of Al2O3-Co composite film shown in Fig.2 (b).

    图 7  Al2O3-Co复合薄膜区域划分示意图和单位面积沉积率曲线 (a) Al2O3-Co复合薄膜沿径向不同区域划分示意图; (b) 不同划分区域单位面积沉积率曲线

    Fig. 7.  Partition diagram and curve of per unit area deposition rate of Al2O3-Co composite film: (a) Diagram of different regions along the radial direction of Al2O3-Co composite film shown in Fig.2 (b); (b) the curve of deposition rate per unit area via divided regions.

    图 8  图2(b)所示Al2O3-Co复合薄膜表面Co离子分布仿真图

    Fig. 8.  Diagram of Co ion distribution on Al2O3-Co composite film surface shown in Fig.2 (b).

    图 9  室温下Al2O3-Co复合薄膜磁化曲线a−c对应图2(b)所示薄膜A到C位置

    Fig. 9.  Hysteresis loops of different positions on Al2O3-Co composite film at room temperature. Curves a−c correspond to positions A to C in Fig. 2(b).

    图 10  Al2O3-Co复合薄膜数码照片 (a) 氧化电压20 V氧化时间14 min, 沉积电压12 V, 偏转电场120 V/m, 沉积时间分别为30, 40, 50, 60 s; (b) 氧化电压20 V氧化时间分别为12, 13, 14和15 min, 沉积电压12 V, 沉积时间为60 s, 偏转电场120 V/m

    Fig. 10.  Digital photos of Al2O3-Co composite films: (a) The films were oxidized with a voltage of 20 V for 14 min. Then they were deposited with a voltage of 12 V for 30, 40, 50, 60 s and deflection field of 120 V/m; (b) the films were oxidized with a voltage of 20 V for 12, 13, 14 and 15 min. Then they were deposited with a voltage of 12 V for 60 s and deflection field of 120 V/m.

    图 11  Al2O3-Co复合薄膜数码照片 (a) 氧化电压20 V氧化时间14 min, 沉积电压为11, 12, 13 V, 沉积时间为60 s, 偏转电场120 V/m; (b) 氧化电压20 V氧化时间为14 min, 沉积电压12 V, 沉积时间为60 s, 偏转电场分别为100, 120 and 140 V/m

    Fig. 11.  Digital photos of Al2O3-Co composite films: (a) The films were oxidized with a voltage of 20 V for 14 min. Then they were deposited with voltage 11, 12, 13 V for 60 s and deflection field of 120 V/m; (b) the films were oxidized with a voltage of 20 V for 14 min. Then they were deposited with a voltage 12 V for 60 s and deflection field of 100, 120 and 140 V/m.

    表 1  图2(b)所示薄膜不同区域参数表

    Table 1.  The parameters of different regions shown in Fig. 2(b).

    区域ABC
    氧化铝模板厚度/nm290290290
    氧化铝-Co复合薄膜厚度/nm305295290
    结构
    模型
    Co层厚度/nm1550
    Co纳米线密度/(%)3060100
    孔洞底部Co纳
    米线长度/nm
    160160160
    孔洞顶部Co纳
    米线长度/nm
    25150
    等效
    结构
    模型
    Co层等效厚度/nm1450
    Co纳米线长度/nm66102160
    未填充纳米
    孔洞长度/nm
    225188130
    干涉级别211
    反射波长/nm392632629
    对应颜色红紫色橙黄色橙红色
    平均折射率n(air-Al2O3)=1.55
    n(Co)=2.09
    n(Co-Al2O3)=1.69
    下载: 导出CSV

    表 2  复合薄膜区域划分面积和20 us末各区域粒子数统计表

    Table 2.  Partition areas of the film and particle statistics at the end of 20 μs.

    区域S1S2S3S4S5S6S7S8S9S10
    面积/mm26.311.113.514.815.515.514.813.511.16.3
    粒子数/个3112939385349849887
    下载: 导出CSV
  • [1]

    Domagalski J T, Xifre-Perez E, Tabrizi M A, Ferre-Borrull J, Marsal L F 2021 J. Colloid Interface Sci. 584 15

    [2]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

    [3]

    Zhang K X, Yao C B, Wen X, Li Q H, Sun W J 2018 RSC Adv. 46 8

    [4]

    Nie M, Sun H, Gao Z D, Li Q, Xue Z H, Luo J, Liao J M 2020 Electrochem. Commun. 115 106719Google Scholar

    [5]

    Gu J J, Yang S M, Dong M Y, Qi Y K 2017 J. Alloys Compd. 728 25

    [6]

    Yang S M, Han W, Li H T, Qi Y K, Gu J J 2015 J. Electrochem. Soc. 162 E123Google Scholar

    [7]

    梁玲玲, 赵艳, 冯超 2020 物理学报 69 065201Google Scholar

    Liang L L, Zhao Y, Feng C 2020 Acta Phys. Sin. 69 065201Google Scholar

    [8]

    Yue Y, Coburn K, Reed B, Liang H 2018 J. Appl. Electrochem. 48 3

    [9]

    Ali H O 2017 Int. J. Surf. Eng. Coat. 95 6

    [10]

    Mahmoud A T, Josep F B, Lluis F M 2020 Microchim. Acta 187 230Google Scholar

    [11]

    Sergey E, Kushnir, Kirill S, Napolskii 2018 Mater. Des. 144 15

    [12]

    Pankaj K, Josep F B, Lluis F M 2020 Adv. Mater. Interfaces 7 22

    [13]

    Kirill S N, Alexey A N, Sergey E K 2020 Opt. Mater. 109 110317Google Scholar

    [14]

    Mahmoud A T, Josep F B, Lluis F M 2020 Sci. Rep. 10 2356Google Scholar

    [15]

    Mo R J, He L, Yan X M, Su T T, Zhou C X, Wang Z, Hong P Z 2018 Electrochem. Commun. 95 9Google Scholar

    [16]

    Liudmyla R, Kateryna K, Volodymyr O, Menglei C 2021 Ukr. Chem. Journ. 86 5

    [17]

    Li X C, Zhang T C, Gao P C 2018 Langmuir 34 49

    [18]

    Liu S X, Tian J L, Zhang W 2021 Nanotechnology 32 222001Google Scholar

    [19]

    Kapoor S, Ahmad H, Julien C M, Islam S S 2020 Appl. Surf. Sci. 512 145654Google Scholar

    [20]

    Sistani M, Staudinger P, Greil J, Holzbauer M, Detz H, Bertagnolli E, Lugstein A 2017 Nano Lett. 17 8Google Scholar

    [21]

    Fang J, Chen S, Vandenberghe W G, Fischetti M V 2017 IEEE Trans. Electron Devices 64 2758Google Scholar

    [22]

    杨淑敏, 韩伟, 顾建军, 李海涛, 岂云开 2015 物理学报 64 076102Google Scholar

    Yang S M, Han W, Gu J J, Li H T, Qi Y K 2015 Acta Phys. Sin. 64 076102Google Scholar

    [23]

    Ruiz-Clavijo A, Caballero-Calero O, Martín-González M 2021 Nanoscale 13 4

  • [1] 卓俊添, 林铭浩, 张齐艳, 黄双武. 热塑性聚酰亚胺/氧化铝三明治结构柔性电介质薄膜的设计制备及其高温介电储能性能. 物理学报, 2024, 73(17): 177701. doi: 10.7498/aps.73.20240838
    [2] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究. 物理学报, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [3] 钱其升, 刘慧研, 查永鹏, 倪海彬. 非对称共轴腔结构色产生与调控. 物理学报, 2022, 71(8): 084103. doi: 10.7498/aps.71.20211337
    [4] 岂云开, 杨淑敏, 李欣, Qin Xu, 顾建军. 多能场复合电沉积对Al2O3-Co复合薄膜物性影响研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211313
    [5] 吐达洪·阿巴, 屈瑜, 白俊冉, 张中月. 平面复合金属微纳结构的圆二色性研究. 物理学报, 2020, 69(10): 107802. doi: 10.7498/aps.69.20200130
    [6] 刘学, 冉宪文, 徐志宏, 汤文辉. 多能复合谱电子束与X射线能量沉积剖面的等效性. 物理学报, 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [7] 杨淑敏, 韩伟, 顾建军, 李海涛, 岂云开. 虹彩环形结构色氧化铝薄膜的制备与研究. 物理学报, 2015, 64(7): 076102. doi: 10.7498/aps.64.076102
    [8] 任桂明, 郑圆圆, 王丁, 王林, 谌晓洪, 王玲, 马敏, 刘华兵. 氢化氧化铝的同位素效应研究. 物理学报, 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [9] 李国栋, 王倩, 邓保霞, 张雅晶. 多孔氧化铝薄膜的光致发光起源: 三种缺陷中心. 物理学报, 2014, 63(24): 247802. doi: 10.7498/aps.63.247802
    [10] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [11] 吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋. 新型氧化铝模板自组装制备非晶碳纳米点阵列膜及其场发射性能研究. 物理学报, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [12] 廖国进, 闫绍峰, 巴德纯. 铈掺杂氧化铝薄膜的蓝紫色发光特性. 物理学报, 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [13] 张 超, 吴卫东, 陈正豪, 周岳亮, 程新路, 杨向东, 何英杰, 孙卫国, 唐永建. Co:BaTiO3纳米复合薄膜的制备及其结构. 物理学报, 2005, 54(2): 982-986. doi: 10.7498/aps.54.982
    [14] 王成伟, 王 建, 李 燕, 刘维民, 徐 洮, 孙小伟, 力虎林. 多孔阳极氧化铝薄膜光学常数的确定. 物理学报, 2005, 54(1): 439-444. doi: 10.7498/aps.54.439
    [15] 李 燕, 王成伟, 田 军, 刘维民, 陈 淼, 力虎林. 钴/氧化铝纳米有序阵列复合结构的光学特性研究. 物理学报, 2004, 53(5): 1594-1598. doi: 10.7498/aps.53.1594
    [16] 莫要武, 夏义本, 黄晓琴, 居建华, 王鸿. 氧化铝基片上沉积金刚石薄膜的Raman光谱分析. 物理学报, 1997, 46(3): 618-624. doi: 10.7498/aps.46.618
    [17] 武珊. Cu + 掺杂口氧化铝光谱性能的研究. 物理学报, 1995, 44(6): 1003-1008. doi: 10.7498/aps.44.1003
    [18] 承焕生, 要小未, 杨福家. 氧化铝与Al(100)基体间界面原子结构研究. 物理学报, 1993, 42(7): 1110-1115. doi: 10.7498/aps.42.1110
    [19] 承焕生;要小未;杨福家. 氧化铝与Al(100)基体间界面原子结构研究. 物理学报, 1991, 40(7): 1110-1115. doi: 10.7498/aps.40.1110
    [20] 贺继平. 提高氧化铝坩埚使用寿命的方法. 物理学报, 1960, 16(7): 423-424. doi: 10.7498/aps.16.423
计量
  • 文章访问数:  4894
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 修回日期:  2021-09-19
  • 上网日期:  2021-12-27
  • 刊出日期:  2022-01-05

/

返回文章
返回