搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频域稀疏采样和激光成像方法

崔岸婧 李道京 吴疆 周凯 高敬涵

引用本文:
Citation:

频域稀疏采样和激光成像方法

崔岸婧, 李道京, 吴疆, 周凯, 高敬涵

Sparse sampling in frequency domain and laser imaging

Cui An-Jing, Li Dao-Jing, Wu Jiang, Zhou Kai, Gao Jing-Han
PDF
HTML
导出引用
  • 激光的单色性和自然图像频谱稀疏且集中在低频区间的特点, 使图像频谱稀疏采样成像成为可能. 基于小规模激光探测器, 引入参考激光, 本文提出了频域稀疏采样激光成像方法. 介绍了频域稀疏采样激光成像的原理和成像系统结构, 推导了激光回波重构复频谱的表达式, 给出了重构频谱和复图像的仿真结果并分析了信号参数对重构效果的影响, 同时采用相干系数、均方误差和结构相似度来评价其重构效果. 规模为256 × 256的激光回波复图像仿真表明, 5个拼接1/4 × 1/4规模频域探测器组成的近似十字型稀疏采样结构, 在约31.25% (5/16)的频域稀疏采样条件下, 仍可获得较好的重构频谱和重构复图像.
    The monochromaticity of the laser and the characteristics of the natural image’s spectrum, including sparsity and concentrating in the low frequency range, make it possible to sample the image spectrum sparsely. Based on small-scale laser detectors and the introduced laser reference signals, a method of laser imaging with sparse sampling in frequency domain is proposed in this paper. The principle of frequency sparse sampling laser imaging and the imaging system structure are introduced. The simulation results of spectrum and complex images reconstructed are given. Both the effects of the signals’ parameters, such as the ratio of the reference laser signal amplitude to the laser echo spectrum amplitude and the initial phase of the laser reference signal, on reconstruction results are investigated. The reconstruction results are evaluated by correlation coefficient, mean square error (MSE), and structural similarity index (SSIM). For the strong correlation between phase and amplitude of the laser echo complex image, the amplitude image and the phase image are both set to be 256 × 256 diagram. The sparse laser detector plane array consists of 5 64 × 64 frequency domain laser detector arrays, which form a cross and make a sparsity rate of 31.25%(5/16). The simulation results show that the correlation coefficient, MSE and SSIM of the spectrum reconstructed are 0.96, 22.14, 1.00 and those of the complex image reconstructed are 0.96, 1857.25 and 0.67 respectively. The simulation results indicate that the method proposed is effective. However, the method requires the laser reference signal amplitude to be about 30 times the mean value of the laser echo spectrum amplitude, which reduces the dynamic range of the detectors. The initial phase of the laser reference signal has no obvious effect on the reconstruction results.
      通信作者: 李道京, lidj@mail.ie.ac.cn
    • 基金项目: 中科院重点部署项目(批准号: E03701010F)资助的课题
      Corresponding author: Li Dao-Jing, lidj@mail.ie.ac.cn
    • Funds: Project supported by the Key Project of Chinese Academy of Sciences (Grant No. E03701010F).
    [1]

    吕乃光 2013 傅里叶光学 (2版) (北京: 机械工业出版社) 第297—312页

    Lü N G 2013 Fourier Optics (Second Edition) (Beijing: China Machine Press) pp297–312 (in Chinese)

    [2]

    韩亮, 田逢春, 徐鑫, 刘伟, 王宇 2008 重庆大学学报 31 426Google Scholar

    Han L, Tian F C, Xü X, Liu W, Wang Y 2008 J. Chongqing Univ. 31 426Google Scholar

    [3]

    Zheng G, Horstmeyer R, Yang C 2013 Nature Photon. 7 739Google Scholar

    [4]

    孙佳嵩, 张玉珍, 陈钱, 左超 2016 光学学报 36 327Google Scholar

    Sun J S, Zhang Y Z, Chen Q, Zuo C 2016 Acta Opt. Sin. 36 327Google Scholar

    [5]

    邵晓鹏, 苏云, 刘金鹏, 刘飞, 李伟, 席特立 2021 光子学报 50 931Google Scholar

    Shao X P, Su Y, Liu J P, Liu F, Li W, Xi T L 2021 Acta Photon. Sin. 50 931Google Scholar

    [6]

    赵明, 王希明, 张晓慧, 张望 2019 激光与光电子学进展 56 121Google Scholar

    Zhao M, Wang X M, Zhang X H, Zhang W 2019 Laser & Optoelectronics Progress 56 121Google Scholar

    [7]

    Xiang M, Pan A, Zhao Y, Fan X, Yao B 2021 Opt. Lett. 46 29Google Scholar

    [8]

    李道京, 朱宇, 胡烜, 于海锋, 周凯, 张润宁, 刘磊 2020 雷达学报 9 195Google Scholar

    Li D J, Zhu Y, Hu X, Yu H F, Zhou K, Zhang R N, Liu L 2020 J. Radars 9 195Google Scholar

    [9]

    Rogers C, Piggott A Y, Thomson D J, Wiser R F, Nicolaescu R 2021 Nature 590 256Google Scholar

    [10]

    李道京, 周凯, 崔岸婧, 乔明, 吴淑梅, 王烨菲, 姚园, 吴疆, 高敬涵 2021 激光与光电子学进展 58 342Google Scholar

    Li D J, Zhou K, Cui A J, Qiao M, Wu S M, Wang Y F, Yao Y, Wu J, Gao J H 2021 Laser & Optoelectronics Progress 58 342Google Scholar

    [11]

    李琦, 丁胜晖, 李运达, 薛凯, 王骐 2012 激光与光电子学进展 49 46Google Scholar

    Li Q, Ding S H, Li Y D, Xue K, Wang Q 2012 Laser & Optoelectronics Progress 49 46Google Scholar

    [12]

    马利红, 王辉, 金洪震, 李勇 2012 中国激光 39 215Google Scholar

    Ma L H, Wang H, Jin H Z, Li Y 2012 Chinese J of Lasers 39 215Google Scholar

    [13]

    保铮, 邢孟道, 王彤 2005 雷达成像技术 (北京: 电子工业出版社)pp30—44

    Bao Z, Xing M D, Wang T 2005 Radar Imaging Technology (Beijing: Publishing House of Electronics Industry) pp30–44 (in Chinese)

    [14]

    戴永江 2002 激光雷达原理 (北京: 国防工业出版社) pp256–260

    Dai Y J 2002 Principle of Lidar (Beijing: National Defense Industry Press) pp256—260 (in Chinese)

    [15]

    谢宗良, 马浩统, 任戈, 亓波, 丁科 2015 光学学报 35 102Google Scholar

    Xie Z L, Ma H T, Ren G, Qi B, Ding K 2015 Acta Opt. Sin. 35 102Google Scholar

    [16]

    Tang W, Guo Y, Yi W, Yang J, Zhu J, Wang W, Li X 2019 Opt. Commun. 443 144Google Scholar

    [17]

    李烈辰 2015 博士学位论文 (北京: 中国科学院大学)

    Li L C 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinses)

    [18]

    Rousseau D, Delahaies A, Chapeau-Blondeau F 2009 IEEE Signal Processing Letters 17 36Google Scholar

    [19]

    Tian H, Li D J 2017 IET Radar, Sonar & Navigation 11 1886Google Scholar

    [20]

    张文辉, 曹良才, 金国藩 2019 红外与激光工程 48 104Google Scholar

    Zhang W H, Cao L C, Jin G F 2019 Infrared and Laser Engineering 48 104Google Scholar

    [21]

    张美玲, 郜鹏, 温凯, 卓可群, 王阳, 刘立新, 闵俊伟, 姚保利 2021 光子学报 50 9Google Scholar

    Zhang M L, Gao P, Wen K, Zhuo K Q, Wang Y, Liu L X, Min J W, Yao B L 2021 Acta Photonica Sinica 50 9Google Scholar

  • 图 1  基于直接探测器的频域稀疏采样成像系统结构

    Fig. 1.  Structure of the frequency-domain sparse sampling imaging system based on direct detector.

    图 2  激光回波复图像幅度图

    Fig. 2.  Laser echo complex image amplitude diagram.

    图 3  面阵探测器频谱实部重构 (a)频谱幅度; (b)频谱相位; (c)图像

    Fig. 3.  Reconstruction of the real part of the plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 4  面阵探测器频谱虚部重构 (a)频谱幅度; (b)频谱相位; (c)图像

    Fig. 4.  Reconstruction of the imaginary part of the plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 5  面阵探测器频谱重构 (a)频谱幅度; (b)频谱相位; (c)图像

    Fig. 5.  Reconstruction of the plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 6  5个1/4 × 1/4规模频域探测器拼接构成十字型探测范围

    Fig. 6.  Cross detection range constituted by five 1/4 × 1/4 scale frequency domain detectors.

    图 7  稀疏面阵探测器频谱实部重构 (a)频谱幅度; (b)频谱相位; (c) 图像

    Fig. 7.  Reconstruction of the real part of the sparse plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 8  稀疏面阵探测器频谱虚部重构 (a)频谱幅度; (b)频谱相位; (c)图像

    Fig. 8.  Reconstruction of the imaginary part of the sparse plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 9  稀疏面阵探测器频谱重构 (a)频谱幅度; (b)频谱相位; (c)图像

    Fig. 9.  Reconstruction of the sparse plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 10  R与稀疏面阵探测器重构复图像相干系数的变化曲线

    Fig. 10.  Change curves of the relationship between R and correlation coefficient of the reconstructed complex image of the sparse plane array detectors.

    图 11  $ {\varphi _2}\left( {x, y} \right) $与稀疏面阵探测器重构复图像相干系数的变化曲线

    Fig. 11.  Change curves of the relationship between $ {\varphi _2}\left( {x, y} \right) $ and correlation coefficient of the reconstructed complex image of the sparse plane array detectors .

    表 1  面阵探测器和稀疏面阵探测器频谱与复图像重构效果

    Table 1.  Spectrum and complex image reconstruction effect of the plane array detectors and the sparse plane array detectors.

    重构结果相干
    系数
    均方
    误差
    结构
    相似度
    面阵探测器重构频谱1.002.511.00
    面阵探测器重构复图像1.000.011.00
    稀疏面阵探测器重构频谱0.9622.141.00
    稀疏面阵探测器重构复图像0.961857.250.67
    下载: 导出CSV
  • [1]

    吕乃光 2013 傅里叶光学 (2版) (北京: 机械工业出版社) 第297—312页

    Lü N G 2013 Fourier Optics (Second Edition) (Beijing: China Machine Press) pp297–312 (in Chinese)

    [2]

    韩亮, 田逢春, 徐鑫, 刘伟, 王宇 2008 重庆大学学报 31 426Google Scholar

    Han L, Tian F C, Xü X, Liu W, Wang Y 2008 J. Chongqing Univ. 31 426Google Scholar

    [3]

    Zheng G, Horstmeyer R, Yang C 2013 Nature Photon. 7 739Google Scholar

    [4]

    孙佳嵩, 张玉珍, 陈钱, 左超 2016 光学学报 36 327Google Scholar

    Sun J S, Zhang Y Z, Chen Q, Zuo C 2016 Acta Opt. Sin. 36 327Google Scholar

    [5]

    邵晓鹏, 苏云, 刘金鹏, 刘飞, 李伟, 席特立 2021 光子学报 50 931Google Scholar

    Shao X P, Su Y, Liu J P, Liu F, Li W, Xi T L 2021 Acta Photon. Sin. 50 931Google Scholar

    [6]

    赵明, 王希明, 张晓慧, 张望 2019 激光与光电子学进展 56 121Google Scholar

    Zhao M, Wang X M, Zhang X H, Zhang W 2019 Laser & Optoelectronics Progress 56 121Google Scholar

    [7]

    Xiang M, Pan A, Zhao Y, Fan X, Yao B 2021 Opt. Lett. 46 29Google Scholar

    [8]

    李道京, 朱宇, 胡烜, 于海锋, 周凯, 张润宁, 刘磊 2020 雷达学报 9 195Google Scholar

    Li D J, Zhu Y, Hu X, Yu H F, Zhou K, Zhang R N, Liu L 2020 J. Radars 9 195Google Scholar

    [9]

    Rogers C, Piggott A Y, Thomson D J, Wiser R F, Nicolaescu R 2021 Nature 590 256Google Scholar

    [10]

    李道京, 周凯, 崔岸婧, 乔明, 吴淑梅, 王烨菲, 姚园, 吴疆, 高敬涵 2021 激光与光电子学进展 58 342Google Scholar

    Li D J, Zhou K, Cui A J, Qiao M, Wu S M, Wang Y F, Yao Y, Wu J, Gao J H 2021 Laser & Optoelectronics Progress 58 342Google Scholar

    [11]

    李琦, 丁胜晖, 李运达, 薛凯, 王骐 2012 激光与光电子学进展 49 46Google Scholar

    Li Q, Ding S H, Li Y D, Xue K, Wang Q 2012 Laser & Optoelectronics Progress 49 46Google Scholar

    [12]

    马利红, 王辉, 金洪震, 李勇 2012 中国激光 39 215Google Scholar

    Ma L H, Wang H, Jin H Z, Li Y 2012 Chinese J of Lasers 39 215Google Scholar

    [13]

    保铮, 邢孟道, 王彤 2005 雷达成像技术 (北京: 电子工业出版社)pp30—44

    Bao Z, Xing M D, Wang T 2005 Radar Imaging Technology (Beijing: Publishing House of Electronics Industry) pp30–44 (in Chinese)

    [14]

    戴永江 2002 激光雷达原理 (北京: 国防工业出版社) pp256–260

    Dai Y J 2002 Principle of Lidar (Beijing: National Defense Industry Press) pp256—260 (in Chinese)

    [15]

    谢宗良, 马浩统, 任戈, 亓波, 丁科 2015 光学学报 35 102Google Scholar

    Xie Z L, Ma H T, Ren G, Qi B, Ding K 2015 Acta Opt. Sin. 35 102Google Scholar

    [16]

    Tang W, Guo Y, Yi W, Yang J, Zhu J, Wang W, Li X 2019 Opt. Commun. 443 144Google Scholar

    [17]

    李烈辰 2015 博士学位论文 (北京: 中国科学院大学)

    Li L C 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinses)

    [18]

    Rousseau D, Delahaies A, Chapeau-Blondeau F 2009 IEEE Signal Processing Letters 17 36Google Scholar

    [19]

    Tian H, Li D J 2017 IET Radar, Sonar & Navigation 11 1886Google Scholar

    [20]

    张文辉, 曹良才, 金国藩 2019 红外与激光工程 48 104Google Scholar

    Zhang W H, Cao L C, Jin G F 2019 Infrared and Laser Engineering 48 104Google Scholar

    [21]

    张美玲, 郜鹏, 温凯, 卓可群, 王阳, 刘立新, 闵俊伟, 姚保利 2021 光子学报 50 9Google Scholar

    Zhang M L, Gao P, Wen K, Zhuo K Q, Wang Y, Liu L X, Min J W, Yao B L 2021 Acta Photonica Sinica 50 9Google Scholar

  • [1] 陈明徕, 马彩文, 刘辉, 罗秀娟, 冯旭斌, 岳泽霖, 赵晶. 基于快速采样的剪切光束成像图像重构算法. 物理学报, 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [2] 张海鹏, 赵昌哲, 鞠晓璐, 汤杰, 肖体乔. 基于迭代重构算法改进晶体衍射分光X射线鬼成像的图像质量研究. 物理学报, 2022, 71(7): 074201. doi: 10.7498/aps.71.20211978
    [3] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶. 剪切光束成像技术稀疏重构算法. 物理学报, 2022, 71(19): 194201. doi: 10.7498/aps.71.20220494
    [4] 张涛, 侯宏, 鲍明. 基于稀疏重构的尾波干涉成像方法. 物理学报, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [5] 赵磊, 徐妙华, 张翌航, 张喆, 朱保君, 姜炜曼, 张笑鹏, 赵旭, 仝博伟, 贺书凯, 卢峰, 吴玉迟, 周维民, 张发强, 周凯南, 谢娜, 黄征, 仲佳勇, 谷渝秋, 李玉同, 李英骏. 利用气泡探测器测量激光快中子. 物理学报, 2018, 67(22): 222101. doi: 10.7498/aps.67.20181035
    [6] 周阳, 张红伟, 钟菲, 郭树旭. 基于自适应阈值方法实现迭代降噪鬼成像. 物理学报, 2018, 67(24): 244201. doi: 10.7498/aps.67.20181240
    [7] 张伟, 张合, 陈勇, 张祥金, 徐孝彬. 脉冲激光四象限探测器测角不确定性统计分布. 物理学报, 2017, 66(1): 012901. doi: 10.7498/aps.66.012901
    [8] 樊金宇, 高峰, 孔文, 黎海文, 史国华. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法. 物理学报, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [9] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究. 物理学报, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [10] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [11] 刘敬, 金伟其, 王霞, 鲁啸天, 温仁杰. 考虑探测器特性的光电偏振成像系统偏振信息重构方法. 物理学报, 2016, 65(9): 094201. doi: 10.7498/aps.65.094201
    [12] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像. 物理学报, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [13] 于树海, 董磊, 刘欣悦, 凌剑勇. 傅里叶望远镜重构图像虚像分析. 物理学报, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [14] 曹蓓, 罗秀娟, 司庆丹, 曾志红. 相干场成像四光束相位闭合算法研究. 物理学报, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [15] 郑仕链, 杨小牛, 赵知劲. 用于随机解调器压缩采样的重构判定方法. 物理学报, 2014, 63(22): 228401. doi: 10.7498/aps.63.228401
    [16] 江天, 程湘爱, 郑鑫, 许中杰, 江厚满, 陆启生. 光伏碲镉汞探测器在波段内连续激光辐照下的非线性响应机理研究. 物理学报, 2012, 61(13): 137302. doi: 10.7498/aps.61.137302
    [17] 郑鑫, 江天, 程湘爱, 江厚满, 陆启生. 波段外激光辐照光导型InSb探测器的一种新现象. 物理学报, 2012, 61(4): 047302. doi: 10.7498/aps.61.047302
    [18] 于文英, 安里千. 锥柱复合目标激光距离多普勒像分析模型. 物理学报, 2012, 61(21): 218703. doi: 10.7498/aps.61.218703
    [19] 谭智勇, 郭旭光, 曹俊诚, 黎华, 韩英军. 基于太赫兹量子阱探测器的太赫兹量子级联激光器发射谱研究. 物理学报, 2010, 59(4): 2391-2395. doi: 10.7498/aps.59.2391
    [20] 殷菲, 胡伟达, 全知觉, 张波, 胡晓宁, 李志锋, 陈效双, 陆卫. 激光束诱导电流法提取HgCdTe光伏探测器的电子扩散长度. 物理学报, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
计量
  • 文章访问数:  2475
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2022-02-12
  • 上网日期:  2022-02-17
  • 刊出日期:  2022-03-05

/

返回文章
返回