-
经典轨迹蒙特卡罗(CTMC)方法是研究离子-原子碰撞系统电荷交换过程的常用方法, 广泛应用于天体物理以及实验室等离子体环境下重粒子碰撞过程的研究. 本文利用四体碰撞模型(4-CTMC)研究了包括两个束缚电子的四体碰撞过程, 通过数值求解四体碰撞系统的哈密顿运动方程, 计算了高电荷态入射离子(Li3+, Be4+和O7+)同氦原子在大能量范围的单、双电子电离和俘获截面. H++He碰撞截面的计算中, 在50—200 keV/amu的入射能区, 4-CTMC的结果几乎重复了实验结果. 在高电荷态入射情形下, 4-CTMC计算的单电子电离和俘获截面值相较于三体碰撞模型(3-CTMC)在100—500 keV/amu的入射能区内与实验符合更好. 尽管4-CTMC和3-CTMC忽略了电子关联, 均高估了双电子电离和俘获截面(与实验值相比), 但4-CTMC的结果更接近实验.The classical trajectory Monte Carlo (CTMC) method is a common method to study the charge-transfer and impact-ionization cross sections for the collisions between ions and atoms, and the heavy particle collision in astrophysics and laboratory plasma environment. Here in this work, we use the 4-CTMC method to study a four-body collision process including two bound electrons, and the Hamiltonian equation of the four-body dynamic system is solved numerically. The single/double electron ionization and capture cross sections are calculated for collisions of high charge state ions (Li3+, Be4+ and O7+) with helium atom in a wide range of projectile energy. The calculation results show that the results from the 4-CTMC method and the experimental measurements are in better agreement in a projectile energy range of 50-200 keV/amu for proton-helium collision system. In addition, for incident ions with high charge state, the results calculated by the 4-CTMC method are in better agreement with the experimental measurements or other theoretical values in a projectile energy range of 100-500 keV/amu. Though the double ionization and capture cross sections calculated by 4-CTMC or 3-CTMC method are higher than the experimental results due to ignoring the electron correlation, the results from the 4-CTMC method are in better agreement with the experimental results.
-
Keywords:
- high charge state ion /
- 4-CTMC /
- charge transfer process
[1] Haberli R M, Gombosi T I, DeZeeuw D L, Combi M R, Powell K G 1997 Science 276 939Google Scholar
[2] Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar
[3] Apicella M L, Apruzzese G, Mazzitelli G, Ridolfini V P, Alekseyev A G, Lazarev V B, Mirnov S V, Zagórski R 2012 Plasma Phys. Controlled Fusion 54 197Google Scholar
[4] Mavrin A A 2020 Plasma Phys. Controlled Fusion 62 105023Google Scholar
[5] Redmer R, Holst B, Hensel F 2010 Metal-to-Nonmetal Transitions (Berlin, Heidelberg: Springer)
[6] 程锐, 张晟, 申国栋, 陈燕红, 张延师, 陈良文, 张子民, 赵全堂, 杨建成, 王瑜玉, 雷瑜, 林平, 杨杰, 杨磊, 马新文, 肖国青, 赵红卫, 詹文龙 2020 中国科学: 物理学 力学 天文学 50 14Google Scholar
Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020 Sci. Sin.-Phys. Mech. Astron. 50 14Google Scholar
[7] JäKel O, Karger C P, Debus J 2008 Med. Phys. 35 5653Google Scholar
[8] Liamsuwan T, Nikjoo H 2013 Phys. Med. Biol. 58 641Google Scholar
[9] Liamsuwan T, Uehara S, Emfietzoglou D, Nikjoo H 2011 Radiat. Prot. Dosim. 143 152Google Scholar
[10] Benka O, Kropf A 1978 At. Data Nucl. Data Tables 22 219Google Scholar
[11] Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar
[12] 宁烨, 何斌, 刘春雷, 颜君, 王建国 2005 物理学报 54 3075Google Scholar
Ning Y, He B, Liu C L, Yan J, Wang J G 2005 Acta Phys. Sin. 54 3075Google Scholar
[13] Montanari C C, Montenegro E C, Miraglia J E 2010 J. Phys. B: At. Mol. Opt. Phys. 43 165201Google Scholar
[14] 杨威, 蔡晓红, 于得洋 2005 物理学报 54 2128Google Scholar
Yang W, Cai X H, Yu D Y 2005 Acta Phys. Sin. 54 2128Google Scholar
[15] Shimakura N, Koizumi S, Suzuki S, Kimura M 1992 Phys. Rev. A 45 7876Google Scholar
[16] Wu Y, Stancil P C, Liebermann H P, Funke P, Havener C C 2011 Phys. Rev. A 84 022711Google Scholar
[17] Hong X, Wang F, Wu Y, Gou B, Wang J 2016 Phys. Rev. A 93 062706Google Scholar
[18] 顾斌, 金年庆, 王志萍, 曾祥华 2005 物理学报 54 4648Google Scholar
Gu B, Jin N Q, Wang Z P, Zeng X H 2005 Acta Phys. Sin. 54 4648Google Scholar
[19] Abrines R, Percival I C 1966 Proc. Phys. Soc. 88 861Google Scholar
[20] Olson R E, Salop A 1977 Phys. Rev. A 16 531Google Scholar
[21] Reinhold C O, Falcón C 1986 Phys. Rev. A 33 3859Google Scholar
[22] Gray T J, Cocke C L, Justiniano E 1980 Phys. Rev. A 22 849Google Scholar
[23] Pfeifer S J, Olson R E 1982 Phys. Lett. A 92 175Google Scholar
[24] Olson R E 1978 Phys. Rev. A 18 2464Google Scholar
[25] Kirschbaum C L, Wilets L 1980 Phys. Rev. A 21 834Google Scholar
[26] Olson R E, Ullrich J, Schmidt-Böcking H 1989 Phys. Rev. A 39 5572Google Scholar
[27] Frémont F 2018 Atoms 6 68Google Scholar
[28] Frémont F 2020 Atoms 8 19Google Scholar
[29] Bachi N, Otranto S 2019 Eur. Phys. J. D 73 4Google Scholar
[30] Jorge A, Illescas C, Méndez L, Pons B 2016 Phys. Rev. A 94 022710Google Scholar
[31] Pitcher C S, Stangeby P C 1997 Plasma Phys. Controlled Fusion 39 779Google Scholar
[32] Federici G, Skinner C H, Brooks J N 2001 Nucl. Fusion 41 1967Google Scholar
[33] 邓柏权, 谢中友 1986 核聚变与等离子体物理 16 22Google Scholar
Deng B Q, Xie Z Y 1986 Nucl. Fusion Plasma Phys. 16 22Google Scholar
[34] Dunn W R, Branduardi-Raymont G, Elsner R F, Vogt M F, Lamy L, Ford P G, Coates A J, Gladstone G R, Jackman C M, Nichols J D 2016 J. Geophys. Res. Space Phys. 121 2274Google Scholar
[35] Shah M B, Gilbody H B 1999 J. Phys. B: At. Mol. Phys. 18 899Google Scholar
[36] Pivovar L I, Levchenko Y Z, Krivonosov G A 1971 J. Exp. Theor. Phys. 32 11Google Scholar
[37] Santanna M M, Santos A, Coelho L, Jalbert G, Belkic D 2009 Phys. Rev. A 80 042707Google Scholar
[38] Mcguire J H, Burgdorfer J 1987 Phys. Rev. A 36 4089Google Scholar
-
表 1 4-CTMC程序中反应类型判据方法
Table 1. Criteria followed for the determination of reactions in 4-CTMC method.
反应类型 ECB EDB ECA EDA 双电子激发 C和D被激发 < 0 < 0 ≥ 0 ≥ 0 双电子俘获 C和D被俘获 ≥ 0 ≥ 0 < 0 < 0 单电子俘获 C被俘获、D被激发 ≥ 0 < 0 < 0 ≥ 0 D被俘获、C被激发 < 0 ≥ 0 ≥ 0 < 0 双电子电离 C和D被电离 ≥ 0 ≥ 0 ≥ 0 ≥ 0 单电子电离 C被电离、D被激发 ≥ 0 < 0 ≥ 0 ≥ 0 D被电离、C被激发 < 0 ≥ 0 ≥ 0 ≥ 0 转移电离 C被电离、D被俘获 ≥ 0 ≥ 0 ≥ 0 < 0 D被电离、C被俘获 ≥ 0 ≥ 0 < 0 ≥ 0 -
[1] Haberli R M, Gombosi T I, DeZeeuw D L, Combi M R, Powell K G 1997 Science 276 939Google Scholar
[2] Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar
[3] Apicella M L, Apruzzese G, Mazzitelli G, Ridolfini V P, Alekseyev A G, Lazarev V B, Mirnov S V, Zagórski R 2012 Plasma Phys. Controlled Fusion 54 197Google Scholar
[4] Mavrin A A 2020 Plasma Phys. Controlled Fusion 62 105023Google Scholar
[5] Redmer R, Holst B, Hensel F 2010 Metal-to-Nonmetal Transitions (Berlin, Heidelberg: Springer)
[6] 程锐, 张晟, 申国栋, 陈燕红, 张延师, 陈良文, 张子民, 赵全堂, 杨建成, 王瑜玉, 雷瑜, 林平, 杨杰, 杨磊, 马新文, 肖国青, 赵红卫, 詹文龙 2020 中国科学: 物理学 力学 天文学 50 14Google Scholar
Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020 Sci. Sin.-Phys. Mech. Astron. 50 14Google Scholar
[7] JäKel O, Karger C P, Debus J 2008 Med. Phys. 35 5653Google Scholar
[8] Liamsuwan T, Nikjoo H 2013 Phys. Med. Biol. 58 641Google Scholar
[9] Liamsuwan T, Uehara S, Emfietzoglou D, Nikjoo H 2011 Radiat. Prot. Dosim. 143 152Google Scholar
[10] Benka O, Kropf A 1978 At. Data Nucl. Data Tables 22 219Google Scholar
[11] Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar
[12] 宁烨, 何斌, 刘春雷, 颜君, 王建国 2005 物理学报 54 3075Google Scholar
Ning Y, He B, Liu C L, Yan J, Wang J G 2005 Acta Phys. Sin. 54 3075Google Scholar
[13] Montanari C C, Montenegro E C, Miraglia J E 2010 J. Phys. B: At. Mol. Opt. Phys. 43 165201Google Scholar
[14] 杨威, 蔡晓红, 于得洋 2005 物理学报 54 2128Google Scholar
Yang W, Cai X H, Yu D Y 2005 Acta Phys. Sin. 54 2128Google Scholar
[15] Shimakura N, Koizumi S, Suzuki S, Kimura M 1992 Phys. Rev. A 45 7876Google Scholar
[16] Wu Y, Stancil P C, Liebermann H P, Funke P, Havener C C 2011 Phys. Rev. A 84 022711Google Scholar
[17] Hong X, Wang F, Wu Y, Gou B, Wang J 2016 Phys. Rev. A 93 062706Google Scholar
[18] 顾斌, 金年庆, 王志萍, 曾祥华 2005 物理学报 54 4648Google Scholar
Gu B, Jin N Q, Wang Z P, Zeng X H 2005 Acta Phys. Sin. 54 4648Google Scholar
[19] Abrines R, Percival I C 1966 Proc. Phys. Soc. 88 861Google Scholar
[20] Olson R E, Salop A 1977 Phys. Rev. A 16 531Google Scholar
[21] Reinhold C O, Falcón C 1986 Phys. Rev. A 33 3859Google Scholar
[22] Gray T J, Cocke C L, Justiniano E 1980 Phys. Rev. A 22 849Google Scholar
[23] Pfeifer S J, Olson R E 1982 Phys. Lett. A 92 175Google Scholar
[24] Olson R E 1978 Phys. Rev. A 18 2464Google Scholar
[25] Kirschbaum C L, Wilets L 1980 Phys. Rev. A 21 834Google Scholar
[26] Olson R E, Ullrich J, Schmidt-Böcking H 1989 Phys. Rev. A 39 5572Google Scholar
[27] Frémont F 2018 Atoms 6 68Google Scholar
[28] Frémont F 2020 Atoms 8 19Google Scholar
[29] Bachi N, Otranto S 2019 Eur. Phys. J. D 73 4Google Scholar
[30] Jorge A, Illescas C, Méndez L, Pons B 2016 Phys. Rev. A 94 022710Google Scholar
[31] Pitcher C S, Stangeby P C 1997 Plasma Phys. Controlled Fusion 39 779Google Scholar
[32] Federici G, Skinner C H, Brooks J N 2001 Nucl. Fusion 41 1967Google Scholar
[33] 邓柏权, 谢中友 1986 核聚变与等离子体物理 16 22Google Scholar
Deng B Q, Xie Z Y 1986 Nucl. Fusion Plasma Phys. 16 22Google Scholar
[34] Dunn W R, Branduardi-Raymont G, Elsner R F, Vogt M F, Lamy L, Ford P G, Coates A J, Gladstone G R, Jackman C M, Nichols J D 2016 J. Geophys. Res. Space Phys. 121 2274Google Scholar
[35] Shah M B, Gilbody H B 1999 J. Phys. B: At. Mol. Phys. 18 899Google Scholar
[36] Pivovar L I, Levchenko Y Z, Krivonosov G A 1971 J. Exp. Theor. Phys. 32 11Google Scholar
[37] Santanna M M, Santos A, Coelho L, Jalbert G, Belkic D 2009 Phys. Rev. A 80 042707Google Scholar
[38] Mcguire J H, Burgdorfer J 1987 Phys. Rev. A 36 4089Google Scholar
计量
- 文章访问数: 4864
- PDF下载量: 87
- 被引次数: 0