搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于腔内球差选模产生高阶拉盖尔-高斯模式激光

刘俊杰 盛泉 王盟 张钧翔 耿兴宁 石争 王爱华 史伟 姚建铨

引用本文:
Citation:

基于腔内球差选模产生高阶拉盖尔-高斯模式激光

刘俊杰, 盛泉, 王盟, 张钧翔, 耿兴宁, 石争, 王爱华, 史伟, 姚建铨

High-order Laguerre-Gaussian mode laser generated based on spherical aberration cavity

Liu Jun-Jie, Sheng Quan, Wang Meng, Zhang Jun-Xiang, Geng Xing-Ning, Shi Zheng, Wang Ai-Hua, Shi Wei, Yao Jian-Quan
PDF
HTML
导出引用
  • 本文报道了基于腔内球差在端泵Nd:YVO4激光器中选择单一高阶拉盖尔-高斯(LG)振荡模式的实验研究. 在激光谐振腔内使用短焦距透镜引入明显的球差, 使具有不同光斑半径的各阶LG模式的光路在空间上发生分离, 从而实现对模式的选择作用, 1.03 W泵浦功率下线偏振1064 nm激光能够在LG0,±10和LG0,±33之间以单横模工作. 分析发现适当的横模间球差是抑制边模、选择单一高阶LG模式的必要条件, 而过大的球差又会导致单一LG模式自身遭受明显的损耗, 不利于产生高阶的LG模式输出. 据此进一步优化实验参数, 获得了角向指数m达到±75的高阶LG模式输出.
    The high-order Laguerre-Gaussian (LG) mode output from an end-pumped Nd:YVO4 laser cavity with strong spherical aberration (SA) induced by short-focal-length lens is studied in this work. A long-focal-length lens L1 is used in the cavity to expand and collimate the beam, so that the beam incident on another short-focal-length lens L2 in the cavity undergoes a strong SA. Since the ring-shaped LG modes with different values of angular index m have different beam radii, the actual focal points of each order of beam are then spatially displaced. A flat output coupler (OC) is located near the focal point of L2, which is composed of a cat-eye retroreflector together with the lens. Such a retroreflector can provide only ideal retroreflection to the incident beam with a focal point exactly on the OC. Given the focal point displacements of the LG beams with different orders, such a mechanism can be used for implementing the transverse mode selection. The mode which has an actual focal point on the OC has a smaller loss than the other defocused modes. With an a-cut Nd:YVO4 as laser crystal, scalar (linear-polarized) single-mode LG output with radical index p = 0 and angular index m>0 is obtained. The laser mode-order is selectable from LG0, ±10 to LG0, ±33 under 878.6-nm incident diode pump power of 1.03 W, by simply adjusting the distance between the OC and L2 in a range of 0.5 mm, when using lens L1 with f = 150 mm and lens L2 of f = 33.9 mm. It is found that sufficient SA which makes the optical paths of the neighboring modes well distinguishable is essential for single-mode operation of a wanted order of LG mode. However, too strong an SA can stop the high-order mode beam from oscillating, since the width and radius of the ring-shaped LG mode are an increasing function of indices p and m, which bring a stronger loss to the corresponding mode. Based on this analysis, we turn to a focal-length combination of f1 = 100 mm and f2 = 51.8 mm, to reduce the SA to a level suitable for further higher mode operation. A highest-order LG0, ±75 is obtained by such an SA mode-selecting technique under fixed pump power of 1.03 W.
      通信作者: 盛泉, shengquan@tju.edu.cn ; 史伟, shiwei@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61975146)资助的课题
      Corresponding author: Sheng Quan, shengquan@tju.edu.cn ; Shi Wei, shiwei@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61975146).
    [1]

    Miles J P 2017 Opt. Express 25 11265Google Scholar

    [2]

    Forbes A 2019 Laser Photonics Rev. 13 1900140Google Scholar

    [3]

    Omatsu T, Miyamoto K, Lee A J 2017 J. Opt. 19 123002Google Scholar

    [4]

    王延娜, 赵迪, 方爱平, 蒋臣威, 高韶燕, 李福利 2015 物理学报 64 224214Google Scholar

    Wang Y N, Zhao D, Fang A P, Jiang C W, Gao S Y, Li F L 2015 Acta Phys. Sin. 64 224214Google Scholar

    [5]

    张光宇, 刘琳婧, 张成龙 2017 光子学报 46 0101001

    Zhang G Y, Liu L J, Zhang C L 2017 Acta Phot. Sin. 46 0101001

    [6]

    Bisson J F, Senatsky Y, Ueda K I 2005 Laser Phys. Lett. 2 327Google Scholar

    [7]

    Zhao Y, Liu Q, Zhou W, Shen D 2016 Opt. Express 24 15596Google Scholar

    [8]

    徐云, 余俊杰, 韩侠辉, 李桂运, 夏克贵, 周常河, 李建郎 2016 中国激光 43 14

    Xu Y, Yu J J, Han X H, Li G Y, Xia K G, Zhou C H, Li J L 2016 Chin. J. Las. 43 14

    [9]

    Ma Y, Lee A J, Pask H M, Miyamoto K, Omatsu T 2020 Opt. Express 28 24095Google Scholar

    [10]

    Ito A, Kozawa Y, Sato S 2010 J. Opt. Soc. Am. A 27 2072

    [11]

    Lee A J, Omatsu T, Pask H M 2013 Opt. Express 21 12401Google Scholar

    [12]

    Chen Y F, Lan Y P, Wang S C 2001 Appl. Phys. B 72 167Google Scholar

    [13]

    Luo S Y, Cai Z P, Sheng C X, Li L, Chen Q 2020 Opt. Laser Technol. 127 106185Google Scholar

    [14]

    Kogelnik H, Li T 1966 Appl. Opt. 5 1550

    [15]

    Belanger P, Pare C 1991 Opt. Lett. 16 1057Google Scholar

    [16]

    Yonezawa K, Kozawa Y, Sato S 2006 Opt. Lett. 31 2151Google Scholar

    [17]

    郁道银, 谈恒英 2016 工程光学 (北京: 机械工业出版社)

    Yu D Y, Tan H Y 2016 Engineering Optics (Vol. 4) (Beijing: China Machine Press) (in Chinese)

    [18]

    姚强强, 王启晗, 冯池, 陈思, 金光勇, 董渊 2018 物理学报 67 174204Google Scholar

    Yao Q Q, Wang Q H, Feng C, Chen S, Jin G Y, Dong Y 2018 Acta Phys. Sin. 67 174204Google Scholar

    [19]

    Senatsky Y, Bisson J F, Shelobolin A, Shirakawa A, Ueda K 2009 Laser Phys. 19 911Google Scholar

    [20]

    Thirugnanasambandam M P, Senatsky Y 2010 Laser Phys. Lett. 7 637Google Scholar

    [21]

    Senatsky Y, Bission J F, Li J, Shirakawa A, Thirugnanasambandam M, Ueda K 2012 Opt. Rev. 19 201Google Scholar

    [22]

    Wang M, Ma Y, Sheng Q, He X, Liu J, Shi W, Yao J, Omatsu T 2021 Opt. Express 29 27783Google Scholar

  • 图 1  高阶拉盖尔-高斯模式激光器光路示意图

    Fig. 1.  Schematic of the high-order Laguerre-Gaussian mode laser.

    图 2  不同角向指数m的LG0, ±m光束理论相对尺寸

    Fig. 2.  Calculated relative beam sizes of the LG0, ±m mode laser.

    图 3  输出镜M2处于不同位置时激光输出的典型近场和远场光斑(入射泵浦功率1.03 W)

    Fig. 3.  Typical near- and Far-field beam patterns of the laser output when the output coupler M2 was located at different positions (incident pump power 1.03 W).

    图 4  激光器处于不同运转模式时的激光输出功率(泵浦功率1.03 W)

    Fig. 4.  Laser output power when the laser operating in different modes (pump power 1.03 W).

    图 5  不同环形光斑半径时球差引起的焦点偏移计算值

    Fig. 5.  Calculated focal point displacement induced by SA considering the radius of the ring LG beams.

    图 6  不同角向指数m对应的透镜L2处LG0, m模式的光斑半径以及环宽度(对基模TEM00光斑半径w归一)

    Fig. 6.  Calculated beam radii and the ring widths of the LG0, m mode with different angular indices m at the lens L2 (normalized to the beam radius w of fundamental mode TEM00).

    图 7  LG0, ±75高阶横模输出的近场(a)和远场(b)激光光斑(泵浦功率1.03 W)

    Fig. 7.  (a) Near-field and (b) far-field beam patterns of the LG0, ±75 high-order transverse mode output (pump power 1.03 W).

  • [1]

    Miles J P 2017 Opt. Express 25 11265Google Scholar

    [2]

    Forbes A 2019 Laser Photonics Rev. 13 1900140Google Scholar

    [3]

    Omatsu T, Miyamoto K, Lee A J 2017 J. Opt. 19 123002Google Scholar

    [4]

    王延娜, 赵迪, 方爱平, 蒋臣威, 高韶燕, 李福利 2015 物理学报 64 224214Google Scholar

    Wang Y N, Zhao D, Fang A P, Jiang C W, Gao S Y, Li F L 2015 Acta Phys. Sin. 64 224214Google Scholar

    [5]

    张光宇, 刘琳婧, 张成龙 2017 光子学报 46 0101001

    Zhang G Y, Liu L J, Zhang C L 2017 Acta Phot. Sin. 46 0101001

    [6]

    Bisson J F, Senatsky Y, Ueda K I 2005 Laser Phys. Lett. 2 327Google Scholar

    [7]

    Zhao Y, Liu Q, Zhou W, Shen D 2016 Opt. Express 24 15596Google Scholar

    [8]

    徐云, 余俊杰, 韩侠辉, 李桂运, 夏克贵, 周常河, 李建郎 2016 中国激光 43 14

    Xu Y, Yu J J, Han X H, Li G Y, Xia K G, Zhou C H, Li J L 2016 Chin. J. Las. 43 14

    [9]

    Ma Y, Lee A J, Pask H M, Miyamoto K, Omatsu T 2020 Opt. Express 28 24095Google Scholar

    [10]

    Ito A, Kozawa Y, Sato S 2010 J. Opt. Soc. Am. A 27 2072

    [11]

    Lee A J, Omatsu T, Pask H M 2013 Opt. Express 21 12401Google Scholar

    [12]

    Chen Y F, Lan Y P, Wang S C 2001 Appl. Phys. B 72 167Google Scholar

    [13]

    Luo S Y, Cai Z P, Sheng C X, Li L, Chen Q 2020 Opt. Laser Technol. 127 106185Google Scholar

    [14]

    Kogelnik H, Li T 1966 Appl. Opt. 5 1550

    [15]

    Belanger P, Pare C 1991 Opt. Lett. 16 1057Google Scholar

    [16]

    Yonezawa K, Kozawa Y, Sato S 2006 Opt. Lett. 31 2151Google Scholar

    [17]

    郁道银, 谈恒英 2016 工程光学 (北京: 机械工业出版社)

    Yu D Y, Tan H Y 2016 Engineering Optics (Vol. 4) (Beijing: China Machine Press) (in Chinese)

    [18]

    姚强强, 王启晗, 冯池, 陈思, 金光勇, 董渊 2018 物理学报 67 174204Google Scholar

    Yao Q Q, Wang Q H, Feng C, Chen S, Jin G Y, Dong Y 2018 Acta Phys. Sin. 67 174204Google Scholar

    [19]

    Senatsky Y, Bisson J F, Shelobolin A, Shirakawa A, Ueda K 2009 Laser Phys. 19 911Google Scholar

    [20]

    Thirugnanasambandam M P, Senatsky Y 2010 Laser Phys. Lett. 7 637Google Scholar

    [21]

    Senatsky Y, Bission J F, Li J, Shirakawa A, Thirugnanasambandam M, Ueda K 2012 Opt. Rev. 19 201Google Scholar

    [22]

    Wang M, Ma Y, Sheng Q, He X, Liu J, Shi W, Yao J, Omatsu T 2021 Opt. Express 29 27783Google Scholar

  • [1] 黄梓樾, 邓宇, 季小玲. 球差对高功率激光上行大气传输光束质量的影响. 物理学报, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [2] 雍康乐, 闫家伟, 唐善发, 张蓉竹. 彗差和球差对涡旋光束斜程传输特性的影响. 物理学报, 2020, 69(1): 014201. doi: 10.7498/aps.69.20191254
    [3] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [4] 连天虹, 王石语, 寇科, 刘芸. 离轴抽运厄米-高斯模固体激光器. 物理学报, 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [5] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究. 物理学报, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [6] 姚强强, 王启晗, 冯池, 陈思, 金光勇, 董渊. 数值模拟抽运分布对端泵激光器晶体热透镜球差的影响. 物理学报, 2018, 67(17): 174204. doi: 10.7498/aps.67.20180113
    [7] 李小泽, 滕雁, 王建国, 宋志敏, 张黎军, 张余川, 叶虎. 过模结构表面波振荡器模式选择. 物理学报, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [8] 何广源, 郭靖, 焦中兴, 王彪. 固体激光器热透镜效应的调控. 物理学报, 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [9] 宋国峰, 张宇, 郭宝山, 汪卫敏. 表面等离子体调制单模面发射激光器的研究. 物理学报, 2009, 58(10): 7278-7281. doi: 10.7498/aps.58.7278
    [10] 李 磊, 赵长明, 张 鹏, 杨苏辉. 激光二极管抽运频差可调谐双频固体激光器的研究. 物理学报, 2007, 56(5): 2663-2669. doi: 10.7498/aps.56.2663
    [11] 张秋琳, 苏红新, 孙 江, 郭庆林, 付广生. LD抽运被动调Q固体激光器的脉冲稳定性. 物理学报, 2007, 56(10): 5818-5820. doi: 10.7498/aps.56.5818
    [12] 薄 勇, 耿爱丛, 毕 勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦. 高平均功率调Q准连续Nd:YAG激光器. 物理学报, 2006, 55(3): 1171-1175. doi: 10.7498/aps.55.1171
    [13] 刘劲松, 刘 海, 王 春, 吕健滔, 樊 婷, 王晓东. 二维随机激光器的模式选择及阈值与饱和特性. 物理学报, 2006, 55(8): 4123-4131. doi: 10.7498/aps.55.4123
    [14] 柳 强, 巩马理, 潘圆圆, 李 晨. 边缘抽运复合Yb:YAG/YAG薄片激光器设计与功率扩展. 物理学报, 2004, 53(7): 2159-2164. doi: 10.7498/aps.53.2159
    [15] 关 俊, 李金萍, 程光华, 陈国夫, 侯 洵. 端面抽运固体激光器热透镜效应的实验研究. 物理学报, 2004, 53(6): 1804-1809. doi: 10.7498/aps.53.1804
    [16] 赵光普, 吕百达. 有球差多色高斯光束衍射引起的光谱开关. 物理学报, 2004, 53(9): 2974-2979. doi: 10.7498/aps.53.2974
    [17] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [18] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 薛海中, 唐映德. 激光二极管抽运固体激光器场分布的热不稳定性研究. 物理学报, 2003, 52(2): 355-361. doi: 10.7498/aps.52.355
    [19] 尚连聚. 端面抽运固体激光器的腔模匹配分析. 物理学报, 2003, 52(6): 1408-1411. doi: 10.7498/aps.52.1408
    [20] 张潮波, 宋峰, 孟凡臻, 丁欣, 张光寅, 商美茹. 利用输出功率测量激光二极管端面抽运的固体激光器热透镜焦距. 物理学报, 2002, 51(7): 1517-1520. doi: 10.7498/aps.51.1517
计量
  • 文章访问数:  6398
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 修回日期:  2021-09-07
  • 上网日期:  2021-09-15
  • 刊出日期:  2022-01-05

/

返回文章
返回