搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

邻羟基苯腈的双色共振增强多光子电离光谱及Franck-Condon模拟

李娜 李淑贤 王林 王慧慧 杨勇刚 赵建明 李昌勇

引用本文:
Citation:

邻羟基苯腈的双色共振增强多光子电离光谱及Franck-Condon模拟

李娜, 李淑贤, 王林, 王慧慧, 杨勇刚, 赵建明, 李昌勇

Two-color resonance enhanced multiphoton ionization spectroscopy of o-hydroxybenzonitrile and Franck-Condon simulation

Li Na, Li Shu-Xian, Wang Lin, Wang Hui-Hui, Yang Yong-Gang, Zhao Jian-Ming, Li Chang-Yong
PDF
HTML
导出引用
  • 在自制直线式飞行时间质谱仪上进行了双色共振增强双光子电离实验, 获得了振动分辨的邻羟基苯腈的共振增强多光子电离(resonance enhanced multiphoton ionization, REMPI)光谱, 结合高精度密度泛函理论计算和Franck-Condon光谱模拟, 详细分析了光谱特征, 发现了大量基频、泛频和组合振动, 并进行了光谱归属. 大部分苯环的基频振动归属为环在平面内的畸变或平面内的摇摆, 这与分子激发过程中苯环的扩张有关. 理论和实验结果都表明, REMPI光谱的低频段信号强, 背景低, 谱带少, 分辨率好. 随着振动频率的增加, 信号向相反的方向变化. 这是由于低频段光谱主要来自于低频的基频振动、少量泛频的贡献. 随着振动频率增加, 泛频和各种模的组合振动逐渐增多, 导致了高频区谱带稠密, 分辨率变差. 高阶振动和多模的组合振动通常有较低的Franck-Condon因子, 因此信号随频率增大逐渐变弱, 信噪比变差.
    The cyano group is a typical electron-withdrawing group, which has aroused the interest of relevant researchers. Many papers reported the dispersed fluorescence spectra of o-hydroxybenzonitrile, its dimers, and complexes with small molecules, aiming to study the intermolecule hydrogen bond and the vibration features of the electronic ground state. There are also reports on using fluorescence excitation spectra to study excited state vibrations, but no report on the systematical analyzing of the vibration features of excited state spectra. Compared with fluorescence spectroscopy, resonance enhanced multiphoton ionization (REMPI) spectroscopy detects ions to obtain excited state energy level data, which has mass-resolution capability, and eliminates the interference of impurities with different charge-to-mass ratios. The strong electron-withdrawing ability of cyano group results in higher ionization energy for molecules containing cyano groups. Many REMPI experiments on benzonitrile derivatives require two-color lasers. In this paper, two-color resonance enhanced two-photon ionization experiment is performed by using a home-made linear time-of-flight mass spectrometer, and the vibration-resolved REMPI spectrum of o-hydroxybenzonitrile is obtained for the first time. Combining the high-precision density functional theory calculations with the Franck-Condon spectral simulations, the spectral characteristics are analyzed in detail, and a large number of fundamental, overtone and combined vibrations are found. The spectral assignment is carried out as accurately as possible. Most of the fundamental vibrations located at ring are assigned to the in-plane distortion or swing of the ring, which is related to the expansion of the ring during the molecular excitation. Theoretical and experimental results show that the low-frequency signal of REMPI spectrum is strong, the background is low, the band is less, and the resolution is good. As the vibration frequency increases, the signal changes in the worse direction. This is because the low-frequency spectrum mainly comes from the low-frequency fundamental vibrations and a little contribution from overtones. As the vibration frequency increases, the contributions from overtone and combined vibrations gradually increase, resulting in dense bands and low resolution. Theoretical calculations show that the high-order vibration and combination of multi-mode vibrations usually have a lower Franck-Condon factor, so the signal gradually becomes weak as the frequency increases, and the signal-to-noise ratio becomes worse.
      通信作者: 李昌勇, lichyong@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0304203)、国家自然科学基金重点项目(批准号: 61835007)、国家自然科学基金(批准号: 11904215, 61575115)、长江学者和创新团队发展计划(批准号: IRT_17R70)、高等学校学科创新引智基地(111计划)(批准号: D18001)和山西省“1331工程”重点学科建设计划资助的课题
      Corresponding author: Li Chang-Yong, lichyong@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the Key Program of the National Natural Science of China (Grant No. 61835007), the National Natural Science Foundation of China (Grants Nos. 11904215, 61575115), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R70), the 111 Project (Grant No. D18001), and the Fund for Shanxi “1331 Project” Key Subjects Construction, China.
    [1]

    Roth W, Imhof P, Kleinermanns K 2001 Phys. Chem. Chem. Phys. 3 1806Google Scholar

    [2]

    Li C, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar

    [3]

    Küpper J, Schmitt M, Kleinermanns K 2002 Phys. Chem. Chem. Phys. 4 4634Google Scholar

    [4]

    Jacoby C, Böhm M, Vu C, Ratzer C, Schmitt M 2006 ChemPhysChem 7 448Google Scholar

    [5]

    Georgieva M K, Angelova P N, Binev I G 2004 J. Mol. Struct. 692 23Google Scholar

    [6]

    Biswas N, Wategaonkar S, Watanabe T, Ebata T, Mikami N 2004 Chem. Phys. Lett. 394 61Google Scholar

    [7]

    Broquier M, Lahmani F, Zehnacker-Rentien A, Brenner V, Millié P, Peremans A 2001 J. Phys. Chem. A 105 6841Google Scholar

    [8]

    Le Barbu-Debus K, Broquier M, Lahmani F, Zehnacker-Rentien A 2005 Mol. Phys. 103 1655Google Scholar

    [9]

    Lahmani F, Zehnacker-Rentien A, Broquier M 2002 J. Photoch. Photobio. A 154 41Google Scholar

    [10]

    Lahmani F, Broquier M, Zehnacker-Rentien A 2002 Chem. Phys. Lett. 354 337Google Scholar

    [11]

    Kopec S, Ottiger P, Leutwyler S, Köppel H 2015 J. Chem. Phys. 142 84308Google Scholar

    [12]

    Imhof P, Kleinermanns K 2001 J. Phys. Chem. A 105 8922Google Scholar

    [13]

    Zhao Y, Jin Y, Li C, Jia S 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [14]

    Hao J, Duan C, Yang Y, Li C, Jia S 2020 J. Mol. Spectrosc. 369 111258Google Scholar

    [15]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 53301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 53301Google Scholar

    [16]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 93301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 93301Google Scholar

    [17]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, et al. 2009 Gaussian 09 (Pittsburgh: Gaussian Inc. )

    [18]

    Santoro F, Lami A, Improta R, Bloino J, Barone V 2008 J. Chem. Phys. 128 224311Google Scholar

    [19]

    Guo M, He R, Dai Y, Shen W, Li M, Zhu C, Lin S H. 2012 J. Chem. Phys. 136 144313Google Scholar

    [20]

    Li C, Lin J L, Tzeng W B 2005 J. Chem. Phys. 122 44311Google Scholar

    [21]

    Ullrich S, Geppert W D, Dessent C E H, Müller-Dethlefs K 2000 J. Phys. Chem. A 104 11864

    [22]

    Schneider M, Wilke M, Hebestreit ML, Ruiz-Santoyo J A, Álvarez-Valtierra L, Yi J T, Meerts W L, Pratt D W, Schmitt M 2017 Phys. Chem. Chem. Phys. 19 21364Google Scholar

    [23]

    Qin C, TzengS Y, Zhang B, Tzeng W B 2014 Acta Phys-Chim. Sin. 30 1416Google Scholar

    [24]

    Huang H C, Shiung K S, Jin B Y, Tzeng W B 2013 Chem. Phys. 425 114Google Scholar

    [25]

    Xu Y, Tzeng S Y, Shivatare V, Takahashi K, Zhang B, Tzeng W B 2015 J. Chem. Phys. 142 124314Google Scholar

    [26]

    Isozaki T, Sakeda K, Suzuki T, Ichimura T 2010 J. Chem. Phys. 132 214308Google Scholar

    [27]

    Huang H C, Jin B Y, Tzeng W B 2012 J. Photoch. and Photobio. A 243 73Google Scholar

    [28]

    Wu P Y, Tzeng S Y, Hsu Y C, Tzeng W B 2017 J. Mol. Spectrosc. 332 3Google Scholar

    [29]

    Yang S C, Huang S W, Tzeng W B 2010 J. Phys. Chem. A 114 11144Google Scholar

    [30]

    Qin C, Tzeng S Y, Zhang B, Tzeng W B 2019 J. Mol. Spectrosc. 355 26Google Scholar

    [31]

    Wilson E B 1934 Phys. Rev. A 45 706Google Scholar

    [32]

    Hollas J M 2004 Modern Spectroscopy (WEST SUSSEX: J. Wiley & Sons) p249

    [33]

    Zhao Y, Jin Y, Hao J, Yang Y, Li C, Jia S 2018 Chem. Phys. Lett. 711 127Google Scholar

  • 图 1  苯酚(a)、苯腈(b)和顺式邻羟基苯腈(c)的稳定构型. 优化结构时采用的原子编号标于原子上

    Fig. 1.  Stable configurations of phenol (a), benzonitrile (b), and cis-ortho-hydroxybenzonitrile (c). The atom labels used in the structure optimization are marked on the atoms.

    图 2  邻羟基苯腈的双色共振多光子电离光谱(a), 及其B3LYP/aug-cc-pvtz理论(b)和B3LYP/6-311++G(d, p)理论(c)的Franck-Condon模拟

    Fig. 2.  Two-color resonance enhanced multiphoton ionization spectrum of o-hydroxybenzonitrile (a), and its Franck-Condon simulations based on B3LYP/aug-cc-pvtz level (b) and B3LYP/6-311++G(d, p) level (c).

    图 3  实验发现的激发态S1较强的振动模及其频率, 括号内数字是理论计算的频率. 实心黑色圆点代表各原子振动到达的最远点位, 空心圆圈代表C原子平衡点位, H原子用小点表示, 平衡点的O和N分别用红色和粉色表示

    Fig. 3.  Strong vibration modes of the excited state S1 and their vibration frequencies found in the experiment. The numbers in parentheses are the theoretically calculated frequencies. The solid black dot represents the biggest displacement, the open circle represents the equilibrium point of the C atom. The H atom is represented by a small dot, and the O and N of the equilibrium point are represented by red and pink dots, respectively.

    图 4  基于B3 LYP/aug-cc-pvtz计算的Franck-Condon光谱及其谱带的归属, 蓝色竖线代表振动模, 线的高度代表了振动模的强度. 大的红色数字代表了计算的所有振动频率按升序排定的序号, 上标数字代表了振动模的泛频次数

    Fig. 4.  Franck-Condon simulation and the assignment of its bands calculated based on B3 LYP/aug-cc-pvtz. The blue vertical line represents the vibration mode, and its height represents the strength of the vibration mode. The big red number represents the sequence number of all calculated vibration frequencies in ascending order, and the superscript number represents the vibrational quantum number of overtone.

    表 1  双色REMPI测量的电子振动跃迁能、振动频率和相对强度、密度泛函理论(B3LYP/6-311++G(d, p))计算的激发态振动频率(修正因子为0.971)及光谱归属(单位: cm–1)

    Table 1.  Measured electronic vibration transition energy, vibration frequency, and relative intensity by two-color REMPI, excited state vibration frequency calculated by density functional theory of B3LYP/6-311++G(d, p) level (scaler factor: 0.971), and spectral assignment (in cm–1).

    跃迁能测量频率相对强度计算频率归属a跃迁能测量频率相对强度计算频率归属a
    339730100$0^0_0 $34715742209b${}^2_0 $
    3410212980131$15^1_0 $3475177856b${}^1_0 $10a${}^1_0 $γCN${}^1_0 $
    3415217917γCN${}^2_0 $34781808189b${}^1_0 $${15}^2_0 $γCN${}^2_0 $
    3423125823$15^2_0 $34787814399b${}^1_0 $6b${}^1_0 $/${1}^1_0 $${15}^1_0 $
    3424327017γCN${}^3_0 $347958221010a${}^3_0 $γCN${}^1_0 $
    342793064$15^1_0 $γCN${}^2_0 $3480383037827${12}^1_0 $
    34306333910a${}^1_0 $γCN${}^1_0 $34844871149b${}^2_0 $${15}^1_0 $
    34344371643719b${}^1_0 $34859886206b${}^2_0 $
    343613883$15^3_0 $34916943346b${}^1_0 $9b${}^1_0 $${15}^1_0 $/${1}^1_0 $${15}^2_0 $
    343703972$15^1_0 $γCN${}^3_0 $349359617212b${}^1_0 $${15}^1_0 $/9b${}^1_0 $βCN${}^1_0 $
    34397424710a${}^1_0 $γCN${}^2_0 $349811008136b${}^1_0 $${15}^1_0 $
    34416443424436b${}^1_0 $35024105135${1}^1_0 $9b${}^1_0 $
    34436463310a${}^1_0 $$15^1_0 $γCN${}^1_0 $35062108933${12}^1_0 $${15}^2_0 $/6b${}^1_0 $9b${}^1_0 $${15}^2_0 $
    34464491810a${}^2_0 $35094112132${1}^1_0 $6b${}^1_0 $
    34473500309b${}^1_0 $$15^1_0 $35130115634${4}^1_0 $6b${}^1_0 $${15}^1_0 $
    34485512510a${}^1_0 $γCN${}^3_0 $351741201191204${13}^1_0 $
    3449452155206a${}^1_0 $352011227296b${}^1_0 $10a${}^1_0 $γCN${}^1_0 $
    3452354959b${}^1_0 $γCN${}^2_0 $352301257276b${}^2_0 $9b${}^1_0 $
    34545572256b${}^1_0 $${15}^1_0 $35247127443${12}^1_0 $6b${}^1_0 $
    345575828586βCN${}^1_0 $352921319296b${}^3_0 $
    3459462176b${}^1_0 $γCN${}^2_0 $35298132524${13}^1_0 $${15}^1_0 $
    34603630149b${}^1_0 $${15}^2_0 $3530613332118b${}^1_0 $6b${}^1_0 $
    3465167951679${1}^1_0 $353281355126b${}^1_0 $16b${}^2_0 $
    3467570276b${}^1_0 $${15}^2_0 $
    注: a β, 平面内的摇摆; γ, 垂直于环平面的振动.
    下载: 导出CSV

    表 2  B3LYP/aug-cc-pvtz理论计算的邻羟基苯腈的电子基态S0和激发态S1的键长和键角

    Table 2.  Bond lengths and bond angles of o-hydroxybenzonitrile in S0 and S1 states calculated with B3LYP/aug-cc-pvtz level.

    S1S0Δ(S1–S0)
    键长/Å
    C1—C21.4541.4070.047
    C2—C31.4111.4010.010
    C3—C41.4191.3820.037
    C4—C51.3991.3950.004
    C5—C61.4141.3850.029
    C6—C11.3991.3930.006
    C1—O111.3331.352–0.019
    O11—H120.9760.9670.009
    C2—C131.3951.424–0.029
    C13—N141.1711.1540.017
    C4—H81.0821.0800.002
    C3—H71.0791.081–0.002
    C6—H101.0801.0800
    C5—H91.0781.081–0.003
    键角/(°)
    C1—O11—H12109.995110.823–0.828
    C2—C13—N14174.683175.853–1.170
    下载: 导出CSV
  • [1]

    Roth W, Imhof P, Kleinermanns K 2001 Phys. Chem. Chem. Phys. 3 1806Google Scholar

    [2]

    Li C, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar

    [3]

    Küpper J, Schmitt M, Kleinermanns K 2002 Phys. Chem. Chem. Phys. 4 4634Google Scholar

    [4]

    Jacoby C, Böhm M, Vu C, Ratzer C, Schmitt M 2006 ChemPhysChem 7 448Google Scholar

    [5]

    Georgieva M K, Angelova P N, Binev I G 2004 J. Mol. Struct. 692 23Google Scholar

    [6]

    Biswas N, Wategaonkar S, Watanabe T, Ebata T, Mikami N 2004 Chem. Phys. Lett. 394 61Google Scholar

    [7]

    Broquier M, Lahmani F, Zehnacker-Rentien A, Brenner V, Millié P, Peremans A 2001 J. Phys. Chem. A 105 6841Google Scholar

    [8]

    Le Barbu-Debus K, Broquier M, Lahmani F, Zehnacker-Rentien A 2005 Mol. Phys. 103 1655Google Scholar

    [9]

    Lahmani F, Zehnacker-Rentien A, Broquier M 2002 J. Photoch. Photobio. A 154 41Google Scholar

    [10]

    Lahmani F, Broquier M, Zehnacker-Rentien A 2002 Chem. Phys. Lett. 354 337Google Scholar

    [11]

    Kopec S, Ottiger P, Leutwyler S, Köppel H 2015 J. Chem. Phys. 142 84308Google Scholar

    [12]

    Imhof P, Kleinermanns K 2001 J. Phys. Chem. A 105 8922Google Scholar

    [13]

    Zhao Y, Jin Y, Li C, Jia S 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [14]

    Hao J, Duan C, Yang Y, Li C, Jia S 2020 J. Mol. Spectrosc. 369 111258Google Scholar

    [15]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 53301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 53301Google Scholar

    [16]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 93301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 93301Google Scholar

    [17]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, et al. 2009 Gaussian 09 (Pittsburgh: Gaussian Inc. )

    [18]

    Santoro F, Lami A, Improta R, Bloino J, Barone V 2008 J. Chem. Phys. 128 224311Google Scholar

    [19]

    Guo M, He R, Dai Y, Shen W, Li M, Zhu C, Lin S H. 2012 J. Chem. Phys. 136 144313Google Scholar

    [20]

    Li C, Lin J L, Tzeng W B 2005 J. Chem. Phys. 122 44311Google Scholar

    [21]

    Ullrich S, Geppert W D, Dessent C E H, Müller-Dethlefs K 2000 J. Phys. Chem. A 104 11864

    [22]

    Schneider M, Wilke M, Hebestreit ML, Ruiz-Santoyo J A, Álvarez-Valtierra L, Yi J T, Meerts W L, Pratt D W, Schmitt M 2017 Phys. Chem. Chem. Phys. 19 21364Google Scholar

    [23]

    Qin C, TzengS Y, Zhang B, Tzeng W B 2014 Acta Phys-Chim. Sin. 30 1416Google Scholar

    [24]

    Huang H C, Shiung K S, Jin B Y, Tzeng W B 2013 Chem. Phys. 425 114Google Scholar

    [25]

    Xu Y, Tzeng S Y, Shivatare V, Takahashi K, Zhang B, Tzeng W B 2015 J. Chem. Phys. 142 124314Google Scholar

    [26]

    Isozaki T, Sakeda K, Suzuki T, Ichimura T 2010 J. Chem. Phys. 132 214308Google Scholar

    [27]

    Huang H C, Jin B Y, Tzeng W B 2012 J. Photoch. and Photobio. A 243 73Google Scholar

    [28]

    Wu P Y, Tzeng S Y, Hsu Y C, Tzeng W B 2017 J. Mol. Spectrosc. 332 3Google Scholar

    [29]

    Yang S C, Huang S W, Tzeng W B 2010 J. Phys. Chem. A 114 11144Google Scholar

    [30]

    Qin C, Tzeng S Y, Zhang B, Tzeng W B 2019 J. Mol. Spectrosc. 355 26Google Scholar

    [31]

    Wilson E B 1934 Phys. Rev. A 45 706Google Scholar

    [32]

    Hollas J M 2004 Modern Spectroscopy (WEST SUSSEX: J. Wiley & Sons) p249

    [33]

    Zhao Y, Jin Y, Hao J, Yang Y, Li C, Jia S 2018 Chem. Phys. Lett. 711 127Google Scholar

  • [1] 王林, 李淑贤, 李军伟, 焦月春, 杨勇刚, 赵建明, 李昌勇. 苯乙腈的单色共振增强双光子电离光谱及其Franck-Condon模拟. 物理学报, 2023, 72(13): 133301. doi: 10.7498/aps.72.20230278
    [2] 赵岩, 李娜, 党思远, 杨国全, 李昌勇. 对氯苯腈的双色共振双光子电离和质量分辨阈值电离光谱. 物理学报, 2022, 71(10): 103301. doi: 10.7498/aps.71.20220089
    [3] 屠倩, 陈友龙, 刘凯, 王凤, 张晓凡, 杨溢, 唐富明, 廖青. 双色双光子阿秒干涉光谱的程函近似模型. 物理学报, 2021, 70(11): 113202. doi: 10.7498/aps.70.20201785
    [4] 李娜, 李昌勇. 邻羟基苯腈的双色共振增强多光子电离光谱及Franck-Condon模拟. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211659
    [5] 王建立, 郭亮, 徐先凡, 倪中华, 陈云飞. 晶格振动的超快光谱调控. 物理学报, 2017, 66(1): 014203. doi: 10.7498/aps.66.014203
    [6] 李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂. 对甲氧基苯甲腈的单色共振双光子电离光谱. 物理学报, 2017, 66(9): 093301. doi: 10.7498/aps.66.093301
    [7] 杜建宾, 武德起, 唐延林, 隆正文. 外场作用下邻苯二甲酸二丁酯的分子结构和光谱研究. 物理学报, 2015, 64(7): 073101. doi: 10.7498/aps.64.073101
    [8] 龙精明, 王华胜. 氯化氢共振多光子电离光谱:F1Δ2态的光谱微扰分析. 物理学报, 2013, 62(16): 163302. doi: 10.7498/aps.62.163302
    [9] 李鸣, 戴长建, 谢军. 用双光子电离探测技术研究奇宇称的Sm原子光谱. 物理学报, 2010, 59(5): 3154-3161. doi: 10.7498/aps.59.3154
    [10] 樊群超, 冯灏, 孙卫国. 双原子离子振动光谱与离解能的研究. 物理学报, 2010, 59(1): 203-209. doi: 10.7498/aps.59.203
    [11] 赵洪英, 戴长建, 关锋. 钐原子的两步激发共振光电离光谱. 物理学报, 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [12] 马金龙, 徐开俊, 李哲, 金飚兵, 傅荣, 张彩虹, 吉争鸣, 张仓, 陈兆旭, 陈健, 吴培亨. D-,L-和DL-奥硝唑随温度变化的太赫兹光谱. 物理学报, 2009, 58(9): 6101-6107. doi: 10.7498/aps.58.6101
    [13] 周恒为, 张晋鲁, 黄以能, 应学农, 张 亮, 吴文惠, 沈异凡. 邻苯二甲酸二甲酯系材料的液态簧振动力学谱测量. 物理学报, 2007, 56(11): 6547-6551. doi: 10.7498/aps.56.6547
    [14] 姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤. 丙酮分子的共振增强多光子电离解离过程的实验研究. 物理学报, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [15] 徐 灿, 曹 娟, 高晨阳. 第一性原理研究一维SiO2纳米材料的结构和性质. 物理学报, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [16] 张立敏, 陈 军, 徐海峰, 戴静华, 刘世林, 陈从香, 马兴孝. 243—263nm S原子Rydberg态的(2+1)共振增强多光子电离. 物理学报, 1999, 48(7): 1204-1209. doi: 10.7498/aps.48.1204
    [17] 李宏年, 徐亚伯, 李海洋, 何丕模, 鲍世宁. 单层纳米碳管振动模的拉曼光谱研究. 物理学报, 1999, 48(2): 273-278. doi: 10.7498/aps.48.273
    [18] 陆庆正, 丁传凡, 高建谧, 孔繁敖. SiH4紫外多光子电离光谱的转动分析. 物理学报, 1991, 40(1): 39-42. doi: 10.7498/aps.40.39
    [19] 张鹏翔, 高小平, 庄为平. 苯甲酸、邻羟基苯甲酸和对羟基苯甲酸在银胶粒中的表面增强喇曼散射. 物理学报, 1985, 34(12): 1603-1612. doi: 10.7498/aps.34.1603
    [20] 张鸿钧, 张志三. 罗谢尔盐的振动光谱. 物理学报, 1959, 15(10): 559-564. doi: 10.7498/aps.15.559
计量
  • 文章访问数:  4240
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-09-22
  • 上网日期:  2022-01-14
  • 刊出日期:  2022-01-20

/

返回文章
返回