搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝颗粒粉尘对冲火焰数值模拟研究

张家瑞 夏智勋 方传波 马立坤 冯运超 OliverStein AndreasKronenburg

引用本文:
Citation:

铝颗粒粉尘对冲火焰数值模拟研究

张家瑞, 夏智勋, 方传波, 马立坤, 冯运超, OliverStein, AndreasKronenburg

Numerical simulation of aluminum dust counterflow flames

Zhang Jia-Rui, Xia Zhi-Xun, Fang Chuan-Bo, Ma Li-Kun, Feng Yun-Chao, Oliver Stein, Andreas Kronenburg
PDF
HTML
导出引用
  • 铝颗粒由于具有能量密度高、易储存、燃烧过程不产生温室气体等优势, 有望成为未来化石燃料替代的解决方案. 本文建立了铝颗粒粉尘火焰的燃烧模型, 其中考虑了相间传热、相变、表面化学反应、气相详细化学反应及辐射传热等过程, 并针对铝颗粒粉尘对冲火焰开展了数值模拟研究. 首先, 通过仿真McGill大学的铝颗粒粉尘对冲火焰实验进行模型验证, 并分析了实验中使用铝颗粒本身作为示踪粒子引起的气相速度测量误差, 结果表明, 数值模拟得到的离散相速度分布与实验结果基本一致, 火焰传播速度的预测值也同实验数据吻合较好. 当颗粒粒径小于10 μm时, 连续介质假设不再成立, 相间传热模型必须考虑过度区机制, 随着颗粒粒径的增加, 火焰传播速度不断降低. 随着对冲火焰拉伸率的增加, 颗粒在火焰区的停留时间减少, 并出现燃烧不完全的现象, 粉尘火焰由双峰变为单峰结构. 火焰传播速度随着拉伸率的增加而增大, 通过线性外推可得到未拉伸的火焰传播速率约为29 cm/s. 辐射引起的热损失会导致气相温度大幅降低, 但辐射传热对颗粒的加热作用相对较小.
    Aluminum is widely used as an additive in solid rocket propellants and pyrotechnics due to its outstanding characteristics such as high energy density and combustion temperature, environmentally benign products, and good stability. Recently, aluminum powders are found to present great potential serving as alternative fuel in a low-carbon economy. In this paper, a detailed model including the effects of interphase heat transfer, phase change, heterogeneous surface reactions, homogeneous combustion and radiation is employed to investigate aluminum dust counterflow flames.The numerical model is first validated by simulating the aluminum dust counterflow flames of McGill University. The results indicate that the particle velocity profile is in very good agreement with the experimental measurements. A detailed analysis of estimating the gas phase velocity based on the particle velocity is performed by using Stoke time τs. The results show that a correct value of τs is the key to this method, and using a single value of τs can bring a notable bias to the results, which may also affect the evaluation of flame speed from the counterflow flame. It is suggested that model validation should be carried out by directly comparing the particle velocity profiles from the simulations with those from the experiments. The flame structure of the aluminum dust counterflow flame is discussed, and the interphase heat transfer model is found to have a great influence on the flame for particle sizes smaller than 10 μm. Therefore, when simulating the aluminum dust flames with small particle sizes, the interphase heat transfer model should be selected carefully so that it can cover the transition heat transfer regime. The effect of particle diameter is examined. With the increase of the particle size, the flame speed continues to decrease, and most particles with a diameter of 15 μm cannot be fully burnt in the present configuration. The strain rate is found to be an important factor affecting the dust flame. As the strain rate increases, the residence time of the particles in the flame zone decreases, which ultimately leads the particles to be combusted incompletely. Moreover, the reaction zone of the counterflow flame, marked as AlO, is observed to be shrunk from a large double-peak structure into a small single-peak one along the burner centerline when strain increases. The reference flame speed increases with strain rate, and an unstretched reference flame speed of roughly 29 cm/s can be obtained by linear extrapolation of the predicted results. The effect of radiation is investigated by comparing two cases with and without radiative heat transfer. The results show that the heat loss caused by radiation can lead the temperature to decrease greatly in the gas phase, but the heating effect on the particles by radiation is relativelysmall.
      通信作者: 马立坤, malikun@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52006240)、湖南省自然科学基金(批准号: 2020 JJ4665, 2021 JJ30775)和国家留学基金(批准号: 201903170201)资助的课题
      Corresponding author: Ma Li-Kun, malikun@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52006240), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2020 JJ4665, 2021 JJ30775), and the China Scholarship Council (Grant No. 201903170201)
    [1]

    王宁飞, 苏万兴, 李军伟, 张峤 2011 固体火箭技术 34 61Google Scholar

    Wang N F, Sun W X, Li J W, Zhang Q 2011 J. Solid Rocket Technol. 34 61Google Scholar

    [2]

    李潮隆, 夏智勋, 马立坤, 赵翔, 罗振兵, 段一凡 2021 航空学报 40 26075

    Li C L, Xia Z X, Ma L K, Zhao X, Luo Z B, Duan Y F 2021 Acta Aeronaut. Astronaut. Sin. 40 26075

    [3]

    王德全, 夏智勋, 胡建新 2010 航空学报 31 1074

    Wang D Q, Xia Z X, Hu J X 2010 Acta Aeronaut. Astronaut. Sin. 31 1074

    [4]

    刘龙, 夏智勋, 黄利亚, 马立坤, 陈斌斌 2020 物理学报 69Google Scholar

    Liu L, Xia Z X, Huang L Y, Ma L K, Chen B B 2020 Acta Phys. Sin. 69Google Scholar

    [5]

    杨晋朝, 夏智勋, 胡建新 2013 物理学报 62 074701Google Scholar

    Yang J Z, Xia Z X, Hu J X 2013 Acta Phys. Sin. 62 074701Google Scholar

    [6]

    Zhang J, Xia Z, Ma L, Huang L, Feng Y, Yang D 2021 Energy 214 118889Google Scholar

    [7]

    Bergthorson J M 2018 Prog. Energy Combust. Sci. 68 169Google Scholar

    [8]

    Goroshin S, Mamen J, Higgins A, Bazyn T, Glumac N, Krier H 2007 Proc. Combust. Inst. 31 2011Google Scholar

    [9]

    Lomba R, Laboureur P, Dumand C, Chauveau C, Halter F 2019 Proc. Combust. Inst. 37 3143Google Scholar

    [10]

    Xu W, Jiang Y 2018 Energies 11 3147Google Scholar

    [11]

    邓哲 2016 博士学位论文 (西安: 西北工业大学)

    Deng Z 2016 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [12]

    Risha G, Huang Y, Yetter R, Yang, V 2005 Proceedings of the 43 rd AIAA Aerospace Sciences Meeting and Exhibit Reno, USA, January 10–13, 2005

    [13]

    Goroshin S, Fomenko I, Lee J H S 1996 Symp. (Int.) Combust. 26 1961Google Scholar

    [14]

    Julien P, Whiteley S, Soo M, Goroshin S, Frost D, Bergthorson J 2017 Proc. Combust. Inst. 36 2291Google Scholar

    [15]

    Julien P, Vickery J, Goroshin S, Frost D, Bergthorson J 2015 Combust. Flame 162 4241Google Scholar

    [16]

    Egolfopoulos F N, Hansen N, Ju Y, Kohse-Höinghaus K, Law C, Qi F 2014 Prog. Energy Combust. Sci. 43 36Google Scholar

    [17]

    Huang Y, Risha G A, Yang V, Yetter R 2009 Combust. Flame 156 5Google Scholar

    [18]

    Escot Bocanegra P, Davidenko D, Sarou-Kanian V, Chauveau C, Gökalp I 2010 Exp. Therm. Fluid Sci. 34 299Google Scholar

    [19]

    Han D, Sung H 2019 Combust. Flame 206 112Google Scholar

    [20]

    Zou X, Wang N, Wang J, Feng Y, Shi B 2021 Aerosp. Sci. Technol. 112 106604Google Scholar

    [21]

    Zou X, Wang N, Liao L, Chu Q, Shi B 2020 Fuel 266 116952Google Scholar

    [22]

    Khalili H, Madani S, Mohammadi M, Poorfar, A, Bidabadi M, Pendleton P, 2019 Combust. Explos. Shock Waves 55 65Google Scholar

    [23]

    Najjar F, Ferry J, Haselbacher A, Balachandar S 2006 J. Spacecraft Rockets 43 1258Google Scholar

    [24]

    刘平安, 常浩, 李树声, 王文超 2018 固体火箭技术 41 156

    Liu P A, Chang H, Li S S, Wang W H 2018 J. Solid Rocket Technol. 41 156

    [25]

    Li C, Xia Z, Ma L, Chen B 2019 Energies 12 1235Google Scholar

    [26]

    Li C, Xia Z, Ma L, Chen B 2019 Acta Astronaut. 162 145Google Scholar

    [27]

    Yuen M, Chen L W 1976 Combust. Sci. Technol. 14 147Google Scholar

    [28]

    Ranz W, Marshall W 1952 Chem. Eng. Prog. 48 141

    [29]

    Mohan S, Trunov M, Dreizin E 2008 J. Heat Transfer 130 104505Google Scholar

    [30]

    Crowe C, Schwarzkopf J, Sommerfeld M, Tsuji Y 2011 Multiphase flows with droplets and particles (2nd Ed.) (Boca Raton: CRC Press) p106

    [31]

    Chase Mhttps://janaf.nist.gov/ [2020-9-6]

    [32]

    Gurevich M, Ozerova G, Stepanov A 1970 Combust. Explos. Shock Waves 6 291Google Scholar

    [33]

    Glorian J, Gallier S, Catoire L 2016 Combust. Flame 168 378Google Scholar

    [34]

    Harrison J, Brewster M 2009 J. Thermophys. Heat Transfer 23 630Google Scholar

    [35]

    Modest M 2013 Radiative Heat Transfer (3rd Ed.) (Amsterdam: Academic Press) p26

    [36]

    Lynch P, Krier H, Glumac N 2010 J. Thermophys. Heat Transfer 24 301Google Scholar

    [37]

    Munzar J, Akih-Kumgeh B, Denman B, Zia A, Bergthorson J 2013 Fuel 113 586Google Scholar

  • 图 1  铝颗粒粉尘对冲火焰的计算域和边界条件

    Fig. 1.  Computational domain and boundary conditions for the counterflow flame with aluminum particles.

    图 2  不同网格分辨率/时间步长下的铝颗粒粉尘对冲火焰轴向参数分布

    Fig. 2.  Average axial profiles across the aluminum counterflow flame under different mesh resolutions and time steps.

    图 3  目标火焰中离散相与气相速度场的计算值与实验测量值的对比

    Fig. 3.  Comparison of the velocity profiles of both particles and gas phase of the target aluminum opposed jet flame calculated in the present study and experimental data.

    图 4  冷态对冲射流的气相与离散相速度分布 (a) dp = 5.6 μm; (b) dp = 15 μm

    Fig. 4.  Velocity profiles of gas phase and particles in non-reacting counterflow: (a) dp = 5.6 μm; (b) dp = 15 μm.

    图 5  不同粉尘浓度下火焰传播速度的预测值与实验值[14]的对比

    Fig. 5.  Comparison of the flame speed calculated in the present study and the experiments in Ref. [14].

    图 6  对冲火焰的时均气相温度(左)和AlO分布(右)和铝颗粒粉尘分布. 颗粒浓度: 500 g/m3, 颗粒直径: 5.6 μm

    Fig. 6.  Time-averaged gas temperature (left) and AlO mass fraction fields (right) and instantaneous particle clouds. Dust concentration: 500 g/m3, particle diameter: 5.6 μm.

    图 7  铝颗粒粉尘对冲火焰轴向参数分布

    Fig. 7.  Average axial profiles across the aluminum counterflow flame.

    图 8  不同相间传热模型对铝颗粒粉尘对冲火焰轴向参数分布的影响

    Fig. 8.  Average axial profiles across the aluminum counterflow flame using different interphase heat transfer models.

    图 9  对冲火焰的时均气相温度(左)和AlO分布(右)和铝颗粒粉尘分布. 颗粒浓度: 500 g/m3, 颗粒直径: 15 μm

    Fig. 9.  Time-averaged gas temperature (left) and AlO mass fraction fields (right) and instantaneous particle clouds. Dust concentration: 500 g/m3, particle diameter: 15 μm.

    图 10  铝颗粒粉尘火焰的火焰传播速度随粒径的变化

    Fig. 10.  Variations of flame speed of aluminum suspensions with particle size.

    图 11  不同平均拉伸率(SR)下对冲火焰的时均气相温度(左)和AlO分布(右)和铝颗粒粉尘分布. 颗粒浓度: 500 g/m3, 颗粒直径: 5.6 μm

    Fig. 11.  Time-averaged gas temperature and AlO mass fraction fields and instantaneous particle clouds of the counterflow flame under different average strain rates (SR). Dust concentration: 500 g/m3, particle diameter: 15 μm.

    图 12  不同相拉伸率对铝颗粒粉尘对冲火焰轴向参数分布的影响

    Fig. 12.  Average axial profiles across the aluminum counterflow flame with a dust concentration of 500 g/m3 under different strain rates (SR). SR1 and SR3 stand for the strain rates of 60 and 500 s-1, respectively.

    图 13  铝颗粒粉尘火焰的火焰传播速度随拉伸率的变化. 颗粒浓度: 500 g/m3, 颗粒直径: 5.6 μm

    Fig. 13.  Variation of flame speed of aluminum suspensions with strain rates. Dust concentration: 500 g/m3, particle diameter: 15 μm.

    图 14  辐射传热对铝颗粒粉尘对冲火焰轴向参数分布的影响. 颗粒浓度: 500 g/m3, 颗粒直径: 5.6 μm

    Fig. 14.  Average axial profiles across the aluminum counterflow flame with and without radiation. Dust concentration: 500 g/m3, particle diameter: 5.6 μm.

    图 15  有/无辐射情况下铝颗粒粉尘中的气离散相温度分布

    Fig. 15.  Scatter plot of particle temperatures with and without radiation.

    表 1  铝-空气详细化学反应机理

    Table 1.  Al/O2 gas-phase mechanism.

    编号基元反应A/(cm3·mol–1·s–1)nE/(cal·mol–1)
    1Al + O2 = AlO + O9.72 × 10130159.95
    2Al + O + M = AlO + M3.0 × 1017–1.00
    3AlO + O2 = OAlO + O4.62 × 1014019885.9
    4Al2O3 = AlOAlO + O3.0 × 1015097649.99
    5Al2O3 = OAlO + AlO3.0 × 10150126999.89
    6AlOAlO = AlO + AlO1.0 × 10150117900
    7AlOAlO = Al + OAlO1.0 × 10150148900
    8AlOAlO = AlOAl + O1.0 × 10150104249.94
    9OAlO = AlO + O1.0 × 1015088549.86
    10AlOAl = AlO + Al1.0 × 10150133199.94
    11Al2O3 = Al2O3(l)1.0 × 101400
    下载: 导出CSV

    表 2  网格分辨率及时间步长敏感性分析算例

    Table 2.  Case setups for mesh resolution and time step sensitivity investigations.

    No.网格分辨率/μm时间步长/s计算域维数
    Case 11251 × 10–63
    Case 21251 × 10–62
    Case 31671 × 10–62
    Case 41001 × 10–62
    Case 51251.2 × 10–62
    Case 61255 × 10–72
    下载: 导出CSV
  • [1]

    王宁飞, 苏万兴, 李军伟, 张峤 2011 固体火箭技术 34 61Google Scholar

    Wang N F, Sun W X, Li J W, Zhang Q 2011 J. Solid Rocket Technol. 34 61Google Scholar

    [2]

    李潮隆, 夏智勋, 马立坤, 赵翔, 罗振兵, 段一凡 2021 航空学报 40 26075

    Li C L, Xia Z X, Ma L K, Zhao X, Luo Z B, Duan Y F 2021 Acta Aeronaut. Astronaut. Sin. 40 26075

    [3]

    王德全, 夏智勋, 胡建新 2010 航空学报 31 1074

    Wang D Q, Xia Z X, Hu J X 2010 Acta Aeronaut. Astronaut. Sin. 31 1074

    [4]

    刘龙, 夏智勋, 黄利亚, 马立坤, 陈斌斌 2020 物理学报 69Google Scholar

    Liu L, Xia Z X, Huang L Y, Ma L K, Chen B B 2020 Acta Phys. Sin. 69Google Scholar

    [5]

    杨晋朝, 夏智勋, 胡建新 2013 物理学报 62 074701Google Scholar

    Yang J Z, Xia Z X, Hu J X 2013 Acta Phys. Sin. 62 074701Google Scholar

    [6]

    Zhang J, Xia Z, Ma L, Huang L, Feng Y, Yang D 2021 Energy 214 118889Google Scholar

    [7]

    Bergthorson J M 2018 Prog. Energy Combust. Sci. 68 169Google Scholar

    [8]

    Goroshin S, Mamen J, Higgins A, Bazyn T, Glumac N, Krier H 2007 Proc. Combust. Inst. 31 2011Google Scholar

    [9]

    Lomba R, Laboureur P, Dumand C, Chauveau C, Halter F 2019 Proc. Combust. Inst. 37 3143Google Scholar

    [10]

    Xu W, Jiang Y 2018 Energies 11 3147Google Scholar

    [11]

    邓哲 2016 博士学位论文 (西安: 西北工业大学)

    Deng Z 2016 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [12]

    Risha G, Huang Y, Yetter R, Yang, V 2005 Proceedings of the 43 rd AIAA Aerospace Sciences Meeting and Exhibit Reno, USA, January 10–13, 2005

    [13]

    Goroshin S, Fomenko I, Lee J H S 1996 Symp. (Int.) Combust. 26 1961Google Scholar

    [14]

    Julien P, Whiteley S, Soo M, Goroshin S, Frost D, Bergthorson J 2017 Proc. Combust. Inst. 36 2291Google Scholar

    [15]

    Julien P, Vickery J, Goroshin S, Frost D, Bergthorson J 2015 Combust. Flame 162 4241Google Scholar

    [16]

    Egolfopoulos F N, Hansen N, Ju Y, Kohse-Höinghaus K, Law C, Qi F 2014 Prog. Energy Combust. Sci. 43 36Google Scholar

    [17]

    Huang Y, Risha G A, Yang V, Yetter R 2009 Combust. Flame 156 5Google Scholar

    [18]

    Escot Bocanegra P, Davidenko D, Sarou-Kanian V, Chauveau C, Gökalp I 2010 Exp. Therm. Fluid Sci. 34 299Google Scholar

    [19]

    Han D, Sung H 2019 Combust. Flame 206 112Google Scholar

    [20]

    Zou X, Wang N, Wang J, Feng Y, Shi B 2021 Aerosp. Sci. Technol. 112 106604Google Scholar

    [21]

    Zou X, Wang N, Liao L, Chu Q, Shi B 2020 Fuel 266 116952Google Scholar

    [22]

    Khalili H, Madani S, Mohammadi M, Poorfar, A, Bidabadi M, Pendleton P, 2019 Combust. Explos. Shock Waves 55 65Google Scholar

    [23]

    Najjar F, Ferry J, Haselbacher A, Balachandar S 2006 J. Spacecraft Rockets 43 1258Google Scholar

    [24]

    刘平安, 常浩, 李树声, 王文超 2018 固体火箭技术 41 156

    Liu P A, Chang H, Li S S, Wang W H 2018 J. Solid Rocket Technol. 41 156

    [25]

    Li C, Xia Z, Ma L, Chen B 2019 Energies 12 1235Google Scholar

    [26]

    Li C, Xia Z, Ma L, Chen B 2019 Acta Astronaut. 162 145Google Scholar

    [27]

    Yuen M, Chen L W 1976 Combust. Sci. Technol. 14 147Google Scholar

    [28]

    Ranz W, Marshall W 1952 Chem. Eng. Prog. 48 141

    [29]

    Mohan S, Trunov M, Dreizin E 2008 J. Heat Transfer 130 104505Google Scholar

    [30]

    Crowe C, Schwarzkopf J, Sommerfeld M, Tsuji Y 2011 Multiphase flows with droplets and particles (2nd Ed.) (Boca Raton: CRC Press) p106

    [31]

    Chase Mhttps://janaf.nist.gov/ [2020-9-6]

    [32]

    Gurevich M, Ozerova G, Stepanov A 1970 Combust. Explos. Shock Waves 6 291Google Scholar

    [33]

    Glorian J, Gallier S, Catoire L 2016 Combust. Flame 168 378Google Scholar

    [34]

    Harrison J, Brewster M 2009 J. Thermophys. Heat Transfer 23 630Google Scholar

    [35]

    Modest M 2013 Radiative Heat Transfer (3rd Ed.) (Amsterdam: Academic Press) p26

    [36]

    Lynch P, Krier H, Glumac N 2010 J. Thermophys. Heat Transfer 24 301Google Scholar

    [37]

    Munzar J, Akih-Kumgeh B, Denman B, Zia A, Bergthorson J 2013 Fuel 113 586Google Scholar

  • [1] 王美乔, 徐泽鲲, 吴福源, 张杰. 等容预压缩等离子体中的快点火热斑形成与燃烧波传播. 物理学报, 2024, 73(5): 055204. doi: 10.7498/aps.73.20231474
    [2] 梁可达, 刘滕飞, 常哲, 张猛, 李志鑫, 黄松松, 王晶. 基于最小二乘法和支持向量机的海洋内孤立波传播速度反演模型. 物理学报, 2023, 72(2): 028301. doi: 10.7498/aps.72.20221633
    [3] 单良, 赵腾飞, 黄荟云, 洪波, 孔明. 基于阻尼LSQR-LMBC的火焰三维温度场重建. 物理学报, 2022, 71(4): 040701. doi: 10.7498/aps.71.20211421
    [4] 杨鑫宇, 彭志敏, 丁艳军, 杜艳君. 基于宽带紫外吸收的火焰温度和OH/NH/NO浓度同步测量. 物理学报, 2022, 71(17): 173301. doi: 10.7498/aps.71.20220208
    [5] 单良, 赵腾飞, 黄荟云, 洪波, 孔明. 基于阻尼LSQR-LMBC的火焰三维温度场重建. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211421
    [6] 蔡继兴, 郭明, 渠旭, 李贺, 金光勇. 激光诱导等离子体的气体动力学和燃烧波扩展速度研究. 物理学报, 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [7] 陈福振, 强洪夫, 苗刚, 高巍然. 燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究. 物理学报, 2015, 64(11): 110202. doi: 10.7498/aps.64.110202
    [8] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究. 物理学报, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [9] 李新宇, 代正华, 徐月亭, 李超, 王辅臣. 甲烷/氧气层流反扩散火焰形态及滞后特性研究. 物理学报, 2015, 64(2): 024704. doi: 10.7498/aps.64.024704
    [10] 陈冉, 刘阿娣, 邵林明, 胡广海, 金晓丽. 使用基于动态程序规划的时间延迟法分析直线磁化等离子体漂移波湍流角向传播速度和带状流结构. 物理学报, 2014, 63(18): 185201. doi: 10.7498/aps.63.185201
    [11] 杨晋朝, 夏智勋, 胡建新. 镁颗粒群着火和燃烧过程数值模拟. 物理学报, 2013, 62(7): 074701. doi: 10.7498/aps.62.074701
    [12] 袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰. 激光脉冲参数对冲击点火的影响. 物理学报, 2011, 60(4): 045207. doi: 10.7498/aps.60.045207
    [13] 刘冬, 严建华, 王飞, 黄群星, 池涌, 岑可法. 火焰烟黑三维温度场和浓度场同时重建实验研究. 物理学报, 2011, 60(6): 060701. doi: 10.7498/aps.60.060701
    [14] 彭志敏, 丁艳军, 翟晓东. 基于火焰发射光谱的转动温度和振动温度的测量. 物理学报, 2011, 60(10): 104702. doi: 10.7498/aps.60.104702
    [15] 杨义涛, 张崇宏, 周丽宏, 李炳生, 张丽卿. 惰性气体离子注入铝镁尖晶石合成金属纳米颗粒的探索. 物理学报, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [16] 黄群星, 刘 冬, 王 飞, 严建华, 池 涌, 岑可法. 非对称碳氢扩散火焰内烟黑浓度与温度联合重建模型研究. 物理学报, 2008, 57(12): 7928-7936. doi: 10.7498/aps.57.7928
    [17] 陈志刚, 朱小蓉, 汤小丽, 孔德军, 王 玲. 火焰喷涂重熔Ni基WC复合涂层的耐磨性能试验研究. 物理学报, 2007, 56(12): 7320-7329. doi: 10.7498/aps.56.7320
    [18] 黄群星, 刘 冬, 王 飞, 严建华, 池 涌, 岑可法. 基于截断奇异值分解的三维火焰温度场重建研究. 物理学报, 2007, 56(11): 6742-6748. doi: 10.7498/aps.56.6742
    [19] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究. 物理学报, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [20] 黄本立, 裴蔼丽, 王俊德. 原子吸收光谱法及火焰光度法测定钠时几种醇类溶剂的影响. 物理学报, 1966, 22(7): 733-742. doi: 10.7498/aps.22.733
计量
  • 文章访问数:  5162
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-12-03
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回