搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sb2Se3薄膜表面和界面超快载流子动力学的瞬态反射光谱分析

黄昊 牛奔 陶婷婷 罗世平 王颖 赵晓辉 王凯 李志强 党伟

引用本文:
Citation:

Sb2Se3薄膜表面和界面超快载流子动力学的瞬态反射光谱分析

黄昊, 牛奔, 陶婷婷, 罗世平, 王颖, 赵晓辉, 王凯, 李志强, 党伟

Ultrafast carrier kinetics at surface and interface of Sb2Se3 film by transient reflectance

Huang Hao, Niu Ben, Tao Ting-Ting, Luo Shi-Ping, Wang Ying, Zhao Xiao-Hui, Wang Kai, Li Zhi-Qiang, Dang Wei
PDF
HTML
导出引用
  • Sb2Se3是一种低成本、环境友好、具有良好应用前景的光伏材料. 目前Sb2Se3太阳能电池的光电转换效率已经提高到了10%. 载流子复合动力学是决定Sb2Se3太阳能电池光电转换效率的关键因素. 本文利用飞秒时间分辨表面瞬态反射谱详细分析了Sb2Se3表面、Sb2Se3/CdS界面载流子复合动力学过程. 根据相对反射率变化${{\Delta }{R}}/{{R}}$的演化, 得到Sb2Se3载流子热化、带隙收缩时间约为0.2—0.5 ps, 估计热载流子冷却时间为3—4 ps. 还实验证实在Sb2Se3/CdS界面处存在自由电子转移和浅束缚电子转移两种电子转移过程. 本文提供了Sb2Se3表面瞬态反射谱分析方法, 所得实验结果拓展了对Sb2Se3表面及Sb2Se3/CdS界面载流子过程的理解.
    Antimony selenide (Sb2Se3) is a promising low-cost and environmentally-friendly semiconductor photovoltaic material. The power conversion efficiency of Sb2Se3 solar cells has been improved to $ \sim $10% in the past few years. The carrier recombination transfer dynamics is significant factor that affects the efficiency of Sb2Se3 solar cells. In this work, carrier recombination on the Sb2Se3 surface and carrier transfer dynamics at the CdS/Sb2Se3 heterojunction interface are systematically investigated by surface transient reflectance. According to the evolution of relative reflectance change ${{\Delta }{R}}/{{R}}$, the carrier thermalization and band gap renormalization time of Sb2Se3 are determined to be in a range from 0.2 to 0.5 ps, and carrier cooling time is estimated to be about 3-4 ps. Our results also demonstrate that both free electron and shallow-trapped electron transfer occur at the Sb2Se3/CdS interface after photo excitation. Our results present a method of explaining the transient reflectance of Sb2Se3 and enhancing the understanding of carrier kinetics at Sb2Se3 surface and Sb2Se3/CdS interface.
      通信作者: 党伟, dangwei@hbu.edu.cn
    • 基金项目: 国家科技支撑计划(批准号: 2019YFB503404)、国家自然科学基金青年科学基金(批准号: 21503066)、河北省教育厅重点项目(批准号: ZD2019037)、河北省自然科学基金杰出青年基金(批准号: F2019201289)和河北省自然科学基金青年项目(批准号: F2017201136)资助的课题
      Corresponding author: Dang Wei, dangwei@hbu.edu.cn
    • Funds: Project supported by the National Key Technologies Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2019YFB503404), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 21503066), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. ZD2019037), the Natural Science Foundation for Distinguished Young Scholars of Hebei Province, China (Grant No. F2019201289), and the Young Scientists Fund of the Natural Science Foundation of Hebei Province, China (Grant No. F2017201136)
    [1]

    Chen C, Li W Q, Zhou Y, Chen C, Luo M, Liu X S, Zeng K, Yang B, Zhang C W, Han J B, Tang J 2015 Appl. Phys. Lett. 107 043905

    [2]

    Kosek F, Tulka J, Štourač L 1978 Czech. J. Phys. B 28 325Google Scholar

    [3]

    Madelung O, Rössler U, Schulz M 2004 Semiconductor: Data Handbook (Vol. 41) (New York: Springer-Verlag Berlin Heidelbergy) pp622–623

    [4]

    Zhou Y, Leng M Y, Xia Z, Zhong J, Song H B, Liu X S, Yang B, Zhang J P, Chen J, Zhou K H, Han J B, Cheng Y B, Tang J 2014 Adv. Energy Mater. 4 1301846Google Scholar

    [5]

    Liu T, Liang X Y, Liu Y F, Li X L, Wang S F, Mai Y H, Li Z Q 2021 Adv. Sci. 8 2100868Google Scholar

    [6]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy 5 587Google Scholar

    [7]

    Chen G H, Wang W L, Wang C D, Ding T, Yang, Q 2015 Adv. Sci. 2 1500109Google Scholar

    [8]

    Zhou Y D, Wei F, Qian X Q, Yu L D, Han X G, Fan G L, Chen Y, Zhu J 2019 ACS Appl. Mater. Interfaces 11 19712Google Scholar

    [9]

    Wu W, Li Y, Liang L M, Hao Q Y, Zhang J, Liu H, Liu C C 2019 J. Phys. Chem. C 123 14781Google Scholar

    [10]

    Yang W, Lee S, Kwon H C, Tan J W, Lee H, Park J, Oh Y J, Choi H, Moon J 2018 ACS Nano 12 11088Google Scholar

    [11]

    Wang K, Chen C, Liao H Y, Wang, S Y, Tang J, Beard M C, Yang Y 2019 J. Phys. Chem. Lett. 10 4881Google Scholar

    [12]

    Grad L, Rohr von F, Zhao J Z, Hengsberger M, Osterwalder J 2020 Phys. Rev. Mater. 4 105404Google Scholar

    [13]

    Singh P, Ghorai N, Thakur A, Ghosh H N 2021 J. Phys. Chem. C 125 5197Google Scholar

    [14]

    Zhang Z Y, Hu M C, Jia T Y, Du J, Chen C, Wang C W, Liu Z Z, Shi T C, Tang J, Leng Y X 2021 ACS Energy Lett. 6 1740Google Scholar

    [15]

    Huang M L, Xu P, Han D, Tang J, Chen S Y 2019 ACS Appl. Mater. Interfaces 11 15564Google Scholar

    [16]

    Henry C H, Logan R A, Bertness K A 1981 J. Appl. Phys. 52 4457Google Scholar

    [17]

    Pashinkin A S, Malkova A S, Mikhailova M S 2008 Russ. J. Phys. Chem. A 82 1035Google Scholar

    [18]

    Zhang Y, Das Sarma S 2005 Phys. Rev. B 72 125303Google Scholar

    [19]

    Wolff P A 1962 Phys. Rev. 126 405Google Scholar

    [20]

    滕利华, 王霞, 赖天树 2011 物理学报 60 047201Google Scholar

    Teng L H, Wang X, Lai T S 2011 Acta Phys. Sin. 60 047201Google Scholar

    [21]

    Prabhu S S, Vengurlekar A S 2004 J. Appl. Phys. 95 7803Google Scholar

    [22]

    Shank C V, Fork R L, Leheny R F, Shah J 1979 Phys. Rev. Lett. 42 112Google Scholar

    [23]

    Tian L, Mario di L, Zannier V, Catone D, Colonna S, O’Keeffe P, Turchini S, Zema N, Rubini S, Martelli F 2016 Phys. Rev. B 94 165442Google Scholar

    [24]

    Joly A G, Williams J R, Chambers S A, Xiong G, Hess W P, Laman D M 2006 J. Appl. Phys. 99 053521Google Scholar

    [25]

    Bennett R B, Soref A R, Del Alamo A J 1990 IEEE J. Quantum Electron. 26 113Google Scholar

    [26]

    Di Cicco A, Polzoni G, Gunnella R, Trapananti A, Minicucci M, Rezvani S J, Catone D, Di Mario L, Pelli Cresi J S, Turchini S, Martelli F 2020 Sci. Rep. 10 17363Google Scholar

    [27]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp Ruud E I, Mai Y H 2019 Nat. Commun. 10 125Google Scholar

    [28]

    Jani H, Duan L Z 2020 Phys. Rev. Appl. 13 054010Google Scholar

    [29]

    Syrbu N N, Zalamai V V, Stamov I G, Beril S I 2020 Beilstein J. Nanotechnol. 11 1045Google Scholar

    [30]

    Wen Y C, Chen C Y, Shen C H, Gwo S, Sun C K 2006 Appl. Phys. Lett. 89 232114Google Scholar

    [31]

    Lobad A, Schlie L A 2004 J. Appl. Phys. 95 97

    [32]

    Nozik A J 2008 Nat. Energy 3 170Google Scholar

    [33]

    Li D B, Yin X X, Grice C R, Guan L, Song Z N, Wang C L, Chen C, Li K H, Cimaroli A J, Awni R A, Zhao D W, Song H S, Tang W H, Yan Y F, Tang J 2018 Nano Energy 49 346Google Scholar

    [34]

    Liu X S, Chen J, Luo M, Leng M Y, Xia Z, Zhou Y, Qin S K, Xue D J, Lv L, Huang H, Niu D M, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687Google Scholar

  • 图 1  (a)两种厚度Sb2Se3薄膜在760和860 nm处$ {{\Delta }{R}}/{{R}} $归一化曲线比较; (b) Sb2Se3/空气界面$ \dfrac{\partial{R}}{{\partial n}} $$ \dfrac{\partial{R}}{{\partial k}} $曲线; (c) Sb2Se3/空气界面$ {{\Delta }{R}}/{{R}} $随温度的变化, 其中R为300 K时的界面反射率, $ {\Delta }{R} $为相对300 K条件下界面反射率的变化

    Fig. 1.  (a) Comparisons of $ {{\Delta }{R}}/{{R}} $ curves at probe wavelengths of 760 and 860 nm from Sb2Se3 film of two thicknesses, where the $ {{\Delta }{R}}/{{R}} $ curves have been normalized; (b) $ \dfrac{\partial{R}}{{\partial n}} $ and $ \dfrac{\partial{R}}{{\partial k}} $ curves of Sb2Se3/air interface; (c) dependence of $ {{\Delta }{R}}/{{R}} $ at Sb2Se3/air interface on temperature, where R is the reflectivity of the interface at 300 K, and $ {\Delta }{R} $ is the reflectivity difference with respect to R of the interface at 300 K.

    图 2  Sb2Se3薄膜载流子弛豫过程示意图

    Fig. 2.  Schematic diagram of carrier relaxation in Sb2Se3 film.

    图 3  (a) Sb2Se3与Sb2Se3/CdS薄膜的吸收光谱; (b) Sb2Se3与Sb2Se3/CdS薄膜的XRD图谱; (c) Sb2Se3薄膜的表面形貌; (d) Sb2Se3薄膜的截面形貌

    Fig. 3.  (a) Absorbance spectra of Sb2Se3 and Sb2Se3/CdS film; (b) XRD diffraction spectra of Sb2Se3 and Sb2Se3/CdS film; (c) surface morphologies of Sb2Se3 film; (d) cross-sectional morphology of Sb2Se3 film.

    图 4  (a) Sb2Se3薄膜的相对反射率变化$ {{\Delta }{R}}/{{R}} $的二维图像(激发波长550 nm, 载流子浓度1.55 × 1020cm–3); (b)典型时间延迟对应的$ {{\Delta }{R}}/{{R}} $谱; (c)典型探测波长对应的$ {{\Delta }{R}}/{{R}} $动力学曲线

    Fig. 4.  (a) Two-dimensional image of relative reflectivity change $ {{\Delta }{R}}/{{R}} $ of Sb2Se3 film excited by 550 nm laser (300 nJ); (b) $ {{\Delta }{R}}/{{R}} $ with various probe wavelengths at three typical time delays; (c) evolutions of $ {{\Delta }{R}}/{{R}} $ of four typical probe wavelengths

    图 5  (a)不同激发光子能量条件下860 nm探测波长处$ {{\Delta }{R}}/{{R}} $动力学曲线比较; (b)不同激发光子能量条件下载流子热化和带隙收缩时间; (c)不同载流子浓度条件下860 nm探测波长处$ {{\Delta }{R}}/{{R}} $动力学曲线比较(激发波长550 nm); (d)不同载流子浓度条件下载流子热化和带隙收缩时间

    Fig. 5.  (a) Comparisons of kinetic curves of $ {{\Delta }{R}}/{{R}} $ at probe wavelength 860 nm with different excitation photon energies; (b) carrier thermalization and band gap renormalization times with different excitation photon energies; (c) comparisons of kinetic curves of $ {{\Delta }{R}}/{{R}} $ with different carrier concentrations (excitation wavelength of 550 nm); (d) carrier thermalization and band gap renormalization time with different carrier concentrations.

    图 6  (a)不同激发光子能量条件下探测波长760 nm处${{\Delta }{R}}/{{R}}$的动力学过程II比较; (b)不同激发光子能量条件下${{\Delta }{R}}/{{R}}$的动力学过程II的衰减寿命

    Fig. 6.  (a) Comparisons of kinetics II of ${{\Delta }{R}}/{{R}}$ at 760 nm with different excitation photon energies; (b) decay lifetime of kinetics II of ${{\Delta }{R}}/{{R}}$ with different excitation energies.

    图 7  (a)典型时间延迟条件下Sb2Se3/CdS的相对反射率变化$ {{\Delta }{R}}/{{R}} $谱(激发波长650 nm); (b) Sb2Se3和Sb2Se3/CdS在495 nm处${{\Delta }{R}}/{{R}}$动力学曲线对比

    Fig. 7.  (a) Relative reflectance change $ {{\Delta }{R}}/{{R}} $ spectra of Sb2Se3/CdS at three time delays (excitation wavelength of 650 nm); (b) comparison of kinetic curves of $ {{\Delta }{R}}/{{R}} $ at 495 nm for Sb2Se3 and Sb2Se3/CdS.

    图 8  4种载流子浓度条件下Sb2Se3与Sb2Se3/CdS在760 nm处的$ {{\Delta }{R}}/{{R}} $的动力学曲线对比 (a) $ 4.79\times {10}^{19} $ cm–3; (b) 9.59 × 1019 cm–3; (c) 1.44 × 1020 cm–3; (d) 1.92 × 1020 cm–3

    Fig. 8.  Comparisons of kinetics of $ {{\Delta }{R}}/{{R}} $ at 760 nm for Sb2Se3 and Sb2Se3/CdS under four different carrier concentrations of (a) $ 4.79\times {10}^{19} $ cm–3, (b) 9.59 × 1019 cm–3, (c) 1.44 × 1020 cm–3, (d) 1.92 × 1020 cm–3

    图 9  Sb2Se3/CdS界面处的主要载流子过程(CB, 导带; VB, 价带)

    Fig. 9.  Main carrier processes at the interface of Sb2Se3/CdS (CB, conduction band; VB, valence band).

  • [1]

    Chen C, Li W Q, Zhou Y, Chen C, Luo M, Liu X S, Zeng K, Yang B, Zhang C W, Han J B, Tang J 2015 Appl. Phys. Lett. 107 043905

    [2]

    Kosek F, Tulka J, Štourač L 1978 Czech. J. Phys. B 28 325Google Scholar

    [3]

    Madelung O, Rössler U, Schulz M 2004 Semiconductor: Data Handbook (Vol. 41) (New York: Springer-Verlag Berlin Heidelbergy) pp622–623

    [4]

    Zhou Y, Leng M Y, Xia Z, Zhong J, Song H B, Liu X S, Yang B, Zhang J P, Chen J, Zhou K H, Han J B, Cheng Y B, Tang J 2014 Adv. Energy Mater. 4 1301846Google Scholar

    [5]

    Liu T, Liang X Y, Liu Y F, Li X L, Wang S F, Mai Y H, Li Z Q 2021 Adv. Sci. 8 2100868Google Scholar

    [6]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy 5 587Google Scholar

    [7]

    Chen G H, Wang W L, Wang C D, Ding T, Yang, Q 2015 Adv. Sci. 2 1500109Google Scholar

    [8]

    Zhou Y D, Wei F, Qian X Q, Yu L D, Han X G, Fan G L, Chen Y, Zhu J 2019 ACS Appl. Mater. Interfaces 11 19712Google Scholar

    [9]

    Wu W, Li Y, Liang L M, Hao Q Y, Zhang J, Liu H, Liu C C 2019 J. Phys. Chem. C 123 14781Google Scholar

    [10]

    Yang W, Lee S, Kwon H C, Tan J W, Lee H, Park J, Oh Y J, Choi H, Moon J 2018 ACS Nano 12 11088Google Scholar

    [11]

    Wang K, Chen C, Liao H Y, Wang, S Y, Tang J, Beard M C, Yang Y 2019 J. Phys. Chem. Lett. 10 4881Google Scholar

    [12]

    Grad L, Rohr von F, Zhao J Z, Hengsberger M, Osterwalder J 2020 Phys. Rev. Mater. 4 105404Google Scholar

    [13]

    Singh P, Ghorai N, Thakur A, Ghosh H N 2021 J. Phys. Chem. C 125 5197Google Scholar

    [14]

    Zhang Z Y, Hu M C, Jia T Y, Du J, Chen C, Wang C W, Liu Z Z, Shi T C, Tang J, Leng Y X 2021 ACS Energy Lett. 6 1740Google Scholar

    [15]

    Huang M L, Xu P, Han D, Tang J, Chen S Y 2019 ACS Appl. Mater. Interfaces 11 15564Google Scholar

    [16]

    Henry C H, Logan R A, Bertness K A 1981 J. Appl. Phys. 52 4457Google Scholar

    [17]

    Pashinkin A S, Malkova A S, Mikhailova M S 2008 Russ. J. Phys. Chem. A 82 1035Google Scholar

    [18]

    Zhang Y, Das Sarma S 2005 Phys. Rev. B 72 125303Google Scholar

    [19]

    Wolff P A 1962 Phys. Rev. 126 405Google Scholar

    [20]

    滕利华, 王霞, 赖天树 2011 物理学报 60 047201Google Scholar

    Teng L H, Wang X, Lai T S 2011 Acta Phys. Sin. 60 047201Google Scholar

    [21]

    Prabhu S S, Vengurlekar A S 2004 J. Appl. Phys. 95 7803Google Scholar

    [22]

    Shank C V, Fork R L, Leheny R F, Shah J 1979 Phys. Rev. Lett. 42 112Google Scholar

    [23]

    Tian L, Mario di L, Zannier V, Catone D, Colonna S, O’Keeffe P, Turchini S, Zema N, Rubini S, Martelli F 2016 Phys. Rev. B 94 165442Google Scholar

    [24]

    Joly A G, Williams J R, Chambers S A, Xiong G, Hess W P, Laman D M 2006 J. Appl. Phys. 99 053521Google Scholar

    [25]

    Bennett R B, Soref A R, Del Alamo A J 1990 IEEE J. Quantum Electron. 26 113Google Scholar

    [26]

    Di Cicco A, Polzoni G, Gunnella R, Trapananti A, Minicucci M, Rezvani S J, Catone D, Di Mario L, Pelli Cresi J S, Turchini S, Martelli F 2020 Sci. Rep. 10 17363Google Scholar

    [27]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp Ruud E I, Mai Y H 2019 Nat. Commun. 10 125Google Scholar

    [28]

    Jani H, Duan L Z 2020 Phys. Rev. Appl. 13 054010Google Scholar

    [29]

    Syrbu N N, Zalamai V V, Stamov I G, Beril S I 2020 Beilstein J. Nanotechnol. 11 1045Google Scholar

    [30]

    Wen Y C, Chen C Y, Shen C H, Gwo S, Sun C K 2006 Appl. Phys. Lett. 89 232114Google Scholar

    [31]

    Lobad A, Schlie L A 2004 J. Appl. Phys. 95 97

    [32]

    Nozik A J 2008 Nat. Energy 3 170Google Scholar

    [33]

    Li D B, Yin X X, Grice C R, Guan L, Song Z N, Wang C L, Chen C, Li K H, Cimaroli A J, Awni R A, Zhao D W, Song H S, Tang W H, Yan Y F, Tang J 2018 Nano Energy 49 346Google Scholar

    [34]

    Liu X S, Chen J, Luo M, Leng M Y, Xia Z, Zhou Y, Qin S K, Xue D J, Lv L, Huang H, Niu D M, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687Google Scholar

  • [1] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率. 物理学报, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [2] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程. 物理学报, 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [3] 高君玲, 赵怀周, 许艳丽. 纳米SiO2复合对Mg3Sb2基材料热电性能的影响. 物理学报, 2023, 72(11): 117102. doi: 10.7498/aps.72.20230176
    [4] 田小让, 贾锐. 通过导纳谱表征铜铟镓硒电池中的缺陷. 物理学报, 2023, 72(17): 178801. doi: 10.7498/aps.72.20230292
    [5] 朱宇豪, 袁翔, 吴勇, 王建国. 质子碰撞硼原子非辐射的电荷转移过程. 物理学报, 2023, 72(16): 163401. doi: 10.7498/aps.72.20230470
    [6] 周庆中, 郭丰, 张明睿, 尤庆亮, 肖标, 刘继延, 刘翠, 刘学清, 王亮. 载流子复合及能量无序对聚合物太阳电池开路电压的影响. 物理学报, 2020, 69(4): 046101. doi: 10.7498/aps.69.20191699
    [7] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [8] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清. 双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率. 物理学报, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [9] 聂国政, 邹代峰, 钟春良, 许英. 内嵌CuO薄膜对并五苯薄膜晶体管性能的改善. 物理学报, 2015, 64(22): 228502. doi: 10.7498/aps.64.228502
    [10] 牟致栋, 魏琦瑛. Fe24+离子双电子复合以及和H2碰撞的共振转移与激发X射线发射过程的研究. 物理学报, 2014, 63(8): 083402. doi: 10.7498/aps.63.083402
    [11] 聂国政, 彭俊彪, 周仁龙. CuI/Al双层电极的有机场效应晶体管. 物理学报, 2011, 60(12): 127304. doi: 10.7498/aps.60.127304
    [12] 冯文天, 马新文, 朱小龙, 张少峰, 刘惠萍, 许慎跃, 钱东斌, 李斌, 闫顺成, 张大成, 孟令杰, 张鹏举. 低能He2+入射He原子转移电离实验中出射电子成像研究. 物理学报, 2010, 59(12): 8471-8477. doi: 10.7498/aps.59.8471
    [13] 乔士柱, 赵俊卿, 贾振锋, 张宁玉, 王凤翔, 付刚, 季燕菊. 自旋极化有机电致发光器件中单线态与三线态激子的形成及调控. 物理学报, 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [14] 刘伟庆, 寇东星, 胡林华, 黄阳, 姜年权, 戴松元. 调制光/电作用下染料敏化太阳电池中电荷传输和界面转移研究. 物理学报, 2010, 59(7): 5141-5147. doi: 10.7498/aps.59.5141
    [15] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [16] 左方圆, 王阳, 吴谊群, 赖天树. Ge2Sb2Te5非晶薄膜中超快载流子动力学的飞秒分辨反射光谱研究. 物理学报, 2009, 58(10): 7250-7254. doi: 10.7498/aps.58.7250
    [17] 董晨钟, 符彦飙. 高离化态Cu18+离子的双电子复合及共振转移激发过程的理论研究. 物理学报, 2006, 55(1): 107-111. doi: 10.7498/aps.55.107
    [18] 胡建民, 信江波, 吕 强, 王月媛, 荣剑英. (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x机械合金化粉体的制备及其冷压烧结样品的热电性能研究. 物理学报, 2006, 55(9): 4843-4848. doi: 10.7498/aps.55.4843
    [19] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉, 罗小华. 有机电致发光器件中载流子的输运和复合发光. 物理学报, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
    [20] 杨达林, 万梅香, 张镜文, 钱人元. 聚N-乙烯基咔唑-2,4,7,三硝基-9-芴酮电荷转移复合物薄膜的载流子迁移率. 物理学报, 1982, 31(12): 104-109. doi: 10.7498/aps.31.104-2
计量
  • 文章访问数:  4633
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-11-01
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回