搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

顶部反射镜对GaN基共振腔发光二极管性能的影响研究

赵淑钰 徐滨滨 赵振宇 吕雪芹

引用本文:
Citation:

顶部反射镜对GaN基共振腔发光二极管性能的影响研究

赵淑钰, 徐滨滨, 赵振宇, 吕雪芹

Influence of top mirror on performance of GaN-based resonant cavity light-emitting diode

Zhao Shu-Yu, Xu Bin-Bin, Zhao Zhen-Yu, Lü Xue-Qin
PDF
HTML
导出引用
  • 本文在GaN基共振腔发光二极管(RCLED)顶部设计制备了高反膜结构分布式布拉格反射镜(DBR)和滤波器结构DBR, 对比分析了两种反射镜的反射率曲线特征以及对应的RCLED器件的光输出纵模模式、光谱线宽和输出光强等性能差异, 详细研究了顶部反射镜的光反射特性对RCLED器件输出光谱性能的影响机理. 研究结果表明, 顶部反射镜是RCLED的重要组成部分, 其反射率曲线特征决定器件的光输出性能. 常规高反膜结构DBR顶部反射镜的反射率曲线具有较宽的高反射带, 将其作为顶部反射镜可有效压窄RCLED发光纵模线宽, 但是发光光谱仍呈现多纵模光输出特征. 滤波器结构DBR顶部反射镜的反射率曲线在中心波长处具有较窄的透光凹带, 利用透光凹带对输出光的调制作用, 器件可实现单纵模光输出, 在光通信、光纤传感等领域展示了广阔的应用前景. 通过进一步设计RCLED顶部反射镜结构, 可以改变其反射率曲线特性, 进而优化RCLED器件的输出光谱特性, 以满足器件在多个领域的应用需求.
    In this paper, two kinds of distributed Bragg reflectors (DBRs) with high-reflective-film structure and filter structure are designed and evaporated on the top of GaN-based resonant cavity light emitting diode (RCLED), respectively. Firstly, the reflectivity spectra of the two kinds of DBRs are simulated. Then, the differences in performance including optical longitudinal modes, spectral linewidth, and output light intensity between the two kinds of RCLED devices with different top mirrors, are compared and analyzed. Finally, the influence of the top mirror reflection characteristics on the output spectrum of the RCLED is studied in detail. The results show that the top mirror is an important part of RCLED, and its reflection characteristics determine the optical performance of the device. For the conventional DBR with high-reflective-film structure, its reflectivity spectrum has a wide high-reflection band. Accordingly, the spectral linewidth of the RCLED can be effectively narrowed by using the conventional DBR as the top mirror. However, the spectrum still consists of multi-longitudinal modes. For the DBR with filter structure, its reflectivity spectrum has a narrow high-transmittance band at the central wavelength. Depending on the modulation effect of the high-transmittance band to the output light, single longitudinal mode light emission is realized for the RCLED with the specially designed DBR as the top mirror, which shows a broad application prospect in optical communication and optical fiber sensing. Moreover, the spectral characteristics of the RCLED can be further optimized to meet its application requirements in much more fields, by designing the top mirror structure and changing its reflectivity spectrum characteristics.
      通信作者: 吕雪芹, xqlv@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61574119)和福建省自然科学基金(批准号: 2021J01048, 2017J01120)资助的课题.
      Corresponding author: Lü Xue-Qin, xqlv@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.61574119) and the Natural Science Foundation of Fujian Province, China(Grant Nos.2021J01048, 2017J01120).
    [1]

    Strite S, Morkoc H 1992 J. Vac. Sci. Technol. B 10 1237Google Scholar

    [2]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [3]

    Wang W L, Lin Y H, Li Y, Li X C, Huang L G, Zheng Y L, Lin Z T, Wang H Y, Li G Q 2018 J. Mater. Chem. C 6 1642Google Scholar

    [4]

    Ricardo X G, Ferreira, Enyuan X, Jonathan J D, Sujan R, Hyunchae C, Grahame F, Scott W, Anthony E, Erdan G, Richard V, Ian H, Dominic C, Martin D 2019 IEEE Photonics Technol. Lett. 28 2023Google Scholar

    [5]

    RoycroftB, Akhter M, Masskant P, Mierry P, Fernandez S, Naranjo F B, Calleja E, Mccormack T, Corbett B 2002 Phys. Stat. Sol. 192 97Google Scholar

    [6]

    Benisty H, Neve H D, Weisbuch C 1998 IEEE J. Quantum Electron. 34 1612Google Scholar

    [7]

    Chu Y C, Su Y K, Chao C H, Yeh W Y 2013 Jpn. J. Appl. Phys. 52 01AG03Google Scholar

    [8]

    Tsai C L, Xu Z F 2013 IEEE Photonics Technol. Lett. 25 1793Google Scholar

    [9]

    Tsai C L, Lu Y C, Ko S C 2016 IEEE Trans. Electron Devices 63 2802Google Scholar

    [10]

    李建军, 曹红康, 邓军, 文振宇, 邹德恕, 周晓倩, 杨启伟 2020 光学学报 40 1526002Google Scholar

    Li J J, Cao H K, Deng J, Wen Z Y, Zou D S, Zhou X Q, Yang Q W 2020 Acta Opt. Sin. 40 1526002Google Scholar

    [11]

    Schubert E F, Wang Y H, Cho A Y, Tu L W, Zydzik G J 1992 Appl. Phys. Lett. 60 921Google Scholar

    [12]

    Horng R H, Wang W K, Huang S Y, Wuu D S 2006 IEEE Photonics Technol. Lett. 18 457Google Scholar

    [13]

    Shaw A J, Bradley A L, Donegan J F, Lunney J G 2004 IEEE Photonics Technol. Lett. 16 2006Google Scholar

    [14]

    Tsai C L, Lu Y C, Ko S C 2016 IEEE Transactions on Electron Devices 63 2802

    [15]

    Dorsaz J, Carlin J F, Zellweger C M, Gradecak S, Ilegems M 2004 Phys. Stat. Sol. 201 2675Google Scholar

    [16]

    Hu X L, Zhang J Y, Liu W J, Chen M, Zhang B P, Xu B S, Wang Q M 2001 Electron. Lett. 47 986Google Scholar

    [17]

    Yang Y, Ji Q B, Zong H, Yan T X, Li J C, Wei T T, Hu X D 2016 Opt. Commun. 374 80Google Scholar

    [18]

    Zhou LM, Ren B C, Zheng Z W, Ying L Y, Long H, Zhang B P 2018 ECS J. Solid State Sci. Technol. 7 34Google Scholar

    [19]

    Cai W, Yuan J L, Ni S Y, Shi Z, Zhou W D, Liu Y H, Wang Y J, Hiroshi A 2019 Appl. Phys. Express 12 032004Google Scholar

    [20]

    李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地 2009 物理学报 58 6304Google Scholar

    Li J J, Yang Z, HaN J, Deng J, Zou D S, Kang Y Z, Ding L, Shen G D 2009 Acta Phys. Sin. 58 6304Google Scholar

    [21]

    李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩 2010 物理学报 59 8615Google Scholar

    Li Z X, Pei L, Qi C H, Peng W J, Ning T G, Zhao R F, Gao S 2010 Acta Phys. Sin. 59 8615Google Scholar

    [22]

    Capmany J, Mriel M A, Sales S, Rubio J J, Pastor D 2003 J. Lightwave Technol. 21 3125Google Scholar

  • 图 1  GaN基RCLED器件结构示意图

    Fig. 1.  Schematic illustration of GaN-based resonant cavity light emitting diode.

    图 2  Ta2O5/SiO2高反膜结构DBR的反射率模拟曲线

    Fig. 2.  Simulated reflectivity spectra of Ta2O5/SiO2 DBR with high-reflective-film structure.

    图 3  滤波器结构DBR的结构示意图

    Fig. 3.  Schematic illustration of Ta2O5/SiO2 DBR with filter structure.

    图 4  滤波器结构DBR的反射率模拟曲线

    Fig. 4.  Simulated reflectivity spectra of Ta2O5/SiO2 DBR with filter structure.

    图 5  蒸镀顶部反射镜前在垂直发光面方向测试的器件电致发光光谱(黑色线)及其Gauss拟合曲线(红色线)

    Fig. 5.  Electroluminescence spectrum (black line) and its Gaussian fitting curve (red line) of the device without top DBR measured perpendicular to the light-emitting surface.

    图 6  顶部蒸镀不同对数高反膜结构DBR时RCLED的模拟输出光谱(黑色线)和对应的顶部反射镜反射率模拟曲线(红色线)

    Fig. 6.  Simulated electroluminescence spectra (black line) of RCLEDs and reflectivity spectra (red line) of the DBRs with high-reflective-film structure.

    图 7  RCLED输出光强随顶部反射镜反射率变化模拟曲线

    Fig. 7.  Simulated light emission intensity of RCLED as a function of the reflectivity of top DBR.

    图 8  顶部蒸镀不同对数滤波器结构DBR时的模拟输出光谱(黑色线)和对应的顶部反射镜反射率模拟曲线(红色线)

    Fig. 8.  Simulated light emission spectra (black line) of RCLEDs and reflectivity spectra (red line) of the DBRs with filter structure.

    图 9  高反膜结构DBR和滤波器结构DBR的反射率曲线测试结果

    Fig. 9.  Measured reflectivity spectra of Ta2O5/SiO2DBRs with high-reflective-film structure and filter structure respectively.

    图 10  顶部没有蒸镀反射镜(黑色线)、蒸镀高反膜DBR(红色线)和滤波器结构DBR(蓝色线)RCLED器件在垂直出光面方向测试的电致发光光谱

    Fig. 10.  Measured electroluminescence spectra perpendicular to the light emitting surface for the RCLEDs without DBR (black line), with top high-reflective-film structure DBR (red line) and with filter structure DBR (blue line), respectively.

  • [1]

    Strite S, Morkoc H 1992 J. Vac. Sci. Technol. B 10 1237Google Scholar

    [2]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [3]

    Wang W L, Lin Y H, Li Y, Li X C, Huang L G, Zheng Y L, Lin Z T, Wang H Y, Li G Q 2018 J. Mater. Chem. C 6 1642Google Scholar

    [4]

    Ricardo X G, Ferreira, Enyuan X, Jonathan J D, Sujan R, Hyunchae C, Grahame F, Scott W, Anthony E, Erdan G, Richard V, Ian H, Dominic C, Martin D 2019 IEEE Photonics Technol. Lett. 28 2023Google Scholar

    [5]

    RoycroftB, Akhter M, Masskant P, Mierry P, Fernandez S, Naranjo F B, Calleja E, Mccormack T, Corbett B 2002 Phys. Stat. Sol. 192 97Google Scholar

    [6]

    Benisty H, Neve H D, Weisbuch C 1998 IEEE J. Quantum Electron. 34 1612Google Scholar

    [7]

    Chu Y C, Su Y K, Chao C H, Yeh W Y 2013 Jpn. J. Appl. Phys. 52 01AG03Google Scholar

    [8]

    Tsai C L, Xu Z F 2013 IEEE Photonics Technol. Lett. 25 1793Google Scholar

    [9]

    Tsai C L, Lu Y C, Ko S C 2016 IEEE Trans. Electron Devices 63 2802Google Scholar

    [10]

    李建军, 曹红康, 邓军, 文振宇, 邹德恕, 周晓倩, 杨启伟 2020 光学学报 40 1526002Google Scholar

    Li J J, Cao H K, Deng J, Wen Z Y, Zou D S, Zhou X Q, Yang Q W 2020 Acta Opt. Sin. 40 1526002Google Scholar

    [11]

    Schubert E F, Wang Y H, Cho A Y, Tu L W, Zydzik G J 1992 Appl. Phys. Lett. 60 921Google Scholar

    [12]

    Horng R H, Wang W K, Huang S Y, Wuu D S 2006 IEEE Photonics Technol. Lett. 18 457Google Scholar

    [13]

    Shaw A J, Bradley A L, Donegan J F, Lunney J G 2004 IEEE Photonics Technol. Lett. 16 2006Google Scholar

    [14]

    Tsai C L, Lu Y C, Ko S C 2016 IEEE Transactions on Electron Devices 63 2802

    [15]

    Dorsaz J, Carlin J F, Zellweger C M, Gradecak S, Ilegems M 2004 Phys. Stat. Sol. 201 2675Google Scholar

    [16]

    Hu X L, Zhang J Y, Liu W J, Chen M, Zhang B P, Xu B S, Wang Q M 2001 Electron. Lett. 47 986Google Scholar

    [17]

    Yang Y, Ji Q B, Zong H, Yan T X, Li J C, Wei T T, Hu X D 2016 Opt. Commun. 374 80Google Scholar

    [18]

    Zhou LM, Ren B C, Zheng Z W, Ying L Y, Long H, Zhang B P 2018 ECS J. Solid State Sci. Technol. 7 34Google Scholar

    [19]

    Cai W, Yuan J L, Ni S Y, Shi Z, Zhou W D, Liu Y H, Wang Y J, Hiroshi A 2019 Appl. Phys. Express 12 032004Google Scholar

    [20]

    李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地 2009 物理学报 58 6304Google Scholar

    Li J J, Yang Z, HaN J, Deng J, Zou D S, Kang Y Z, Ding L, Shen G D 2009 Acta Phys. Sin. 58 6304Google Scholar

    [21]

    李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩 2010 物理学报 59 8615Google Scholar

    Li Z X, Pei L, Qi C H, Peng W J, Ning T G, Zhao R F, Gao S 2010 Acta Phys. Sin. 59 8615Google Scholar

    [22]

    Capmany J, Mriel M A, Sales S, Rubio J J, Pastor D 2003 J. Lightwave Technol. 21 3125Google Scholar

  • [1] 关建飞, 俞潇, 丁冠天, 陈陶, 陆云清. 金属光栅覆盖DBR结构的透射增强效应研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240357
    [2] 罗宇轩, 程用志, 陈浮, 罗辉, 李享成. 基于沙漏形人工表面等离激元和交指电容结构的双频滤波器设计. 物理学报, 2023, 72(4): 044101. doi: 10.7498/aps.72.20221984
    [3] 赵淑钰, 徐滨滨, 赵振宇, 吕雪芹. 顶部反射镜对GaN基共振腔发光二极管性能的影响研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211720
    [4] 戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄. 单脉冲时间精确可控的单纵模Nd:YAG激光器. 物理学报, 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [5] 符民, 文尚胜, 夏云云, 向昌明, 马丙戌, 方方. GaN基通孔垂直结构的发光二极管失效分析. 物理学报, 2017, 66(4): 048501. doi: 10.7498/aps.66.048501
    [6] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究. 物理学报, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [7] 曾志斌, 姚引娣, 庄奕琪. 一种采用互补结构的宽阻带共模缺陷地滤波器. 物理学报, 2015, 64(16): 164101. doi: 10.7498/aps.64.164101
    [8] 兰峰, 高喜, 亓丽梅. 基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究. 物理学报, 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [9] 黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益. 硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究. 物理学报, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [10] 蒋瑶, 张伟利, 朱叶雨. 非对称DBR-金属-DBR结构的光学Tamm态理论研究. 物理学报, 2013, 62(16): 167303. doi: 10.7498/aps.62.167303
    [11] 桑田, 蔡托, 刘芳, 蔡绍洪, 张大伟. 带虚设层的抗反射结构导模共振滤波器设计与分析. 物理学报, 2013, 62(2): 024215. doi: 10.7498/aps.62.024215
    [12] 崔广斌, 苗俊刚, 张勇芳. 亚毫米波段波导阵列结构频率选择性滤波器的设计. 物理学报, 2012, 61(22): 224102. doi: 10.7498/aps.61.224102
    [13] 林志锋, 张云山, 高春清, 高明伟. LD抽运Cr,Tm,Ho∶YAG微片激光器单纵模运转特性的研究. 物理学报, 2009, 58(3): 1689-1693. doi: 10.7498/aps.58.1689
    [14] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响. 物理学报, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [15] 麻健勇, 刘世杰, 魏朝阳, 许 程, 晋云霞, 赵元安, 邵建达, 范正修. 反射型导模共振滤波器设计. 物理学报, 2008, 57(2): 827-832. doi: 10.7498/aps.57.827
    [16] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [17] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响. 物理学报, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [18] 谢自力, 张 荣, 修向前, 韩 平, 刘 斌, 陈 琳, 俞慧强, 江若琏, 施 毅, 郑有炓. 用于紫外探测器DBR结构的高质量AlGaN材料MOCVD生长及其特性研究. 物理学报, 2007, 56(11): 6717-6721. doi: 10.7498/aps.56.6717
    [19] 曹 辉, 孙军强, 张新亮, 肖凌燕, 黄德修. 一种新颖的超结构光纤Bragg光栅梳状滤波器的设计. 物理学报, 2004, 53(9): 3077-3082. doi: 10.7498/aps.53.3077
    [20] 刘海文, 孙晓玮, 李征帆, 钱 蓉, 周 旻. 基于分形特征和双层光子带隙结构的宽阻带低通滤波器. 物理学报, 2003, 52(12): 3082-3086. doi: 10.7498/aps.52.3082
计量
  • 文章访问数:  3798
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 修回日期:  2021-10-27
  • 上网日期:  2022-02-15
  • 刊出日期:  2022-02-20

/

返回文章
返回