搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计

赵振宇 刘海文 陈智娇 董亮 常乐 高萌英

引用本文:
Citation:

基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计

赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英

Dual circularly polarized Fabry-Perot antenna with metamaterial-based corner reflector for high gain and high aperture efficiency

Zhao Zhen-Yu, Liu Hai-Wen, Chen Zhi-Jiao, Dong Liang, Chang Le, Gao Meng-Ying
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于射线跟踪模型, 提出了一种超材料角反射面结构, 实现了Fabry-Perot天线增益和口径效率的提升. 首先对基于超材料角反射面的Fabry-Perot天线进行了理论推导和分析. 然后, 设计并分析了双圆极化馈源、基于超材料角反射面的Fabry-Perot天线及其性能. 最后, 对所提出的Fabry-Perot天线模型进行了制造和测试. 结果表明, 该天线的左圆极化增益和右圆极化增益分别为21.4 dBi和21.3 dBi. 相比馈源天线, 增益分别提高了16.4 dB和16.3 dB. 与传统Fabry-Perot天线相比, 所提出超材料角反射面同时充当了反射面和相位校正面, 实现了对Fabry-Perot天线边缘电磁波的有效调控. 所设计Fabry-Perot天线工作在2.8 GHz频段, 具有高增益、高口径效率和低旁瓣的优点, 满足了太阳射电望远镜F107指数观测的需求.
    Based on the ray-tracing model, a new method of achieving a high gain and high aperture efficiency Fabry-Perot antenna with metamaterial-based corner reflector is proposed. The proposed Fabry-Perot antenna is composed of a dual circularly polarized patch antenna feed and the metamaterial-based corner reflector. The metamaterial-based corner reflector consists of four phase correction metasurfaces and a partially reflective surface. First, theory and analysis of the Fabry-Perot antenna with metamaterial-based corner reflector are presented. Then, the performances of the dual circularly polarized antenna feed, the traditional Fabry-Perot antenna, and the Fabry-Perot antenna with metamaterial-based corner reflector are compared among each other and analyzed. Finally, the proposed Fabry-Perot antenna is fabricated and measured. The measured left-hand circular polarization (LHCP) gain and the measured right-hand circular polarization (RHCP) gain of the proposed Fabry-Perot antenna are 21.4 dBi and 21.3 dBi, respectively. Comparing with the antenna feed, the LHCP gain and RHCP gain of the proposed Fabry-Perot antenna are enhanced by 16.4 dB and 16.3 dB, respectively. Compared with the traditional Fabry-Perot antenna, the metamaterial-based corner reflector acts as both a reflection surface and a phase correction surface. It manipulates the propagation direction and phase of electromagnetic wave. The proposed Fabry-Perot antenna with high gain, high aperture efficiency and low sidelobe at 2.8 GHz paves the way for developing the solar radio telescope and conducting the observation.
      通信作者: 刘海文, haiwen_liu@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 11941003)、国家自然科学基金重点项目(批准号: U1831201)、国家自然科学基金联合基金(批准号: U2031133)、国家重点研发计划(批准号: 2017YFE0128200)和云南省应用基础研究计划(批准号: 2019FB009)资助的课题
      Corresponding author: Liu Hai-Wen, haiwen_liu@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grants No. 11941003), the Key Program of the National Natural Science Foundation of China (Grant No. U1831201), the Joint Funds of the National Natural Science Foundation of China (Grant No. U2031133), the National Key Research and Development Program (Grant No. 2017YFE0128200), and the Applied Basic Research Program of Yunnan Province, China (Grant No. 2019FB009).
    [1]

    Deminov M G, Deminova G F 2020 Geomag. Aeron. 60 606Google Scholar

    [2]

    Sun Z X, Wang J Q, Yu L F, Gou W, Wang G L 2021 Res. Astron. Astrophys. 21 105Google Scholar

    [3]

    Zhang X G, Jiang W X, Jiang H L, Wang Q, Tian H W, Bai L, Luo Z J, Sun S, Luo Y, Qiu C W, Cui T J 2020 Nat. Electron. 3 165Google Scholar

    [4]

    王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波 2018 物理学报 67 204101Google Scholar

    Wang C, Li Y F, Shen Y, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2018 Acta Phys. Sin. 67 204101Google Scholar

    [5]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar

    [6]

    Zhu S S, Liu H W, Wen P 2019 IEEE Trans. Antennas Propag. 67 1952Google Scholar

    [7]

    Ge Y, Sun Z, Chen Z, Chen Y 2016 IEEE Antennas Wirel. Propag. Lett. 15 1889Google Scholar

    [8]

    郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐 2020 物理学报 69 244101Google Scholar

    Hao B, Yang B F, Gao J, Cao X Y, Yang H H, Li T 2020 Acta Phys. Sin. 69 244101Google Scholar

    [9]

    Zhu S S, Liu H W, Chen Z J 2021 J. Phys. D: Appl. Phys. 54 28LT02Google Scholar

    [10]

    郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪 2020 物理学报 69 234102Google Scholar

    Guo Z X, Cao X Y, Gao J, Li S J, Yang H H, Hao B 2020 Acta Phys. Sin. 69 234102Google Scholar

    [11]

    Liu Z, Liu S, Zhao X, Kong X, Huang Z, Bian B 2020 IEEE Trans. Antennas Propagat. 68 6497Google Scholar

    [12]

    Almutawa A T, Hosseini A, Jackson D R, Capolino F 2019 IEEE Trans. Antennas Propagat. 67 5163Google Scholar

    [13]

    Lu Y F, Lin Y C 2013 IEEE Trans. Antennas Propag. 61 5395Google Scholar

    [14]

    Foroozesh A, Shafai L 2010 IEEE Trans. Antennas Propagat. 58 258Google Scholar

    [15]

    Singh A K, Abegaonkar M P, Koul S K 2017 IEEE Antennas Wirel. Propag. Lett. 16 2388Google Scholar

    [16]

    Al A Y, Kishk A A 2020 IEEE Trans. Antennas Propagat. 19 1920Google Scholar

    [17]

    Zhou L, Duan X, Luo Z J, Zhou Y H, Chen X 2020 IEEE Trans. Antennas Propagat. 68 7601Google Scholar

    [18]

    Guo Q, Wong H 2020 IEEE Trans. Antennas Propagat. 68 564Google Scholar

    [19]

    Zhou L, Chen X, Duan X 2018 IEEE Trans. Antennas Propagat. 66 2061Google Scholar

    [20]

    Xie P, Wang G G, Zou X J, Zong B F 2021 IEEE Trans. Antennas Propagat. 69 6965Google Scholar

    [21]

    Amiri M A, Balanis C A, Birtcher C R, Barber G C 2020 IEEE Trans. Antennas Propagat. 68 7208Google Scholar

    [22]

    Foroozesh A, Shafai L 2011 IEEE Trans. Antennas Propagat. 59 4Google Scholar

    [23]

    Guo Q Y, Lin Q W, Wong H 2021 IEEE Trans. Antennas Propagat. 69 1179Google Scholar

    [24]

    Orr R, Goussetis G, Fusco V 2014 IEEE Trans. Antennas Propagat. 62 19Google Scholar

  • 图 1  传统F-P天线剖面图

    Fig. 1.  Sectional view of the traditional F-P antenna.

    图 2  基于超材料角反射面的F-P天线原理图

    Fig. 2.  Principle of the F-P antenna with metamaterial-based corner reflector.

    图 3  所设计F-P天线3维结构图

    Fig. 3.  Exploded view of the designed F-P antenna.

    图 4  贴片天线馈源结构图

    Fig. 4.  The geometry of the patch antenna feed.

    图 5  贴片天线馈源轴比和增益

    Fig. 5.  Simulated axial ratio and gain of the antenna feed.

    图 6  PRS单元结构

    Fig. 6.  The PRS unit structure.

    图 7  PRS单元和介质基板的反射系数

    Fig. 7.  Reflection coefficient of the PRS unit and substrate.

    图 8  两种F-P天线结构 (a) 天线A; (b) 天线B

    Fig. 8.  Two F-P antenna structures: (a) Antenna A; (b) antenna B.

    图 9  天线A和天线B增益与PRS单元个数关系

    Fig. 9.  Simulated gain of antenna A and antenna B with different PRS units.

    图 10  基于超材料角反射面F-P天线的中心剖面图

    Fig. 10.  Sectional view of the F-P antenna with metamaterial-based corner reflector.

    图 11  PCM和AMC单元 (a) PCM正面和反面; (b) AMC单元

    Fig. 11.  The proposed PCM and the AMC unit: (a) Front and bottom of PCM; (b) AMC unit.

    图 12  优化前和优化后AMC单元反射相位

    Fig. 12.  Reflection phase of the AMC unit before and after optimization.

    图 13  所设计天线和天线B增益和口径效率对比

    Fig. 13.  Gain and aperture efficiency of the proposed F-P antenna and antenna B.

    图 14  电场分布图 (a)天线B; (b)所设计F-P天线

    Fig. 14.  Electric field distributions: (a) Antenna B; (b) the proposed F-P antenna.

    图 15  F-P天线实物及暗室测试环境

    Fig. 15.  The fabricated F-P antenna and measurements in microwave anechoic chamber.

    图 16  天线轴比和增益 (a) 左旋圆极化; (b) 右旋圆极化

    Fig. 16.  Axial ratio and gain: (a) Left-hand circular polarization; (b) right-hand circular polarization.

    图 17  天线方向图 (a) 左旋圆极化方向图; (b) 右旋圆极化方向图

    Fig. 17.  Radiation patterns: (a) Left-hand circular polarization; (b) right-hand circular polarization.

    表 1  天线参数

    Table 1.  Parameters of the proposed antenna.

    参数数值/mm 参数数值/mm 参数数值/mm
    $l_{1} $588 $w_{1} $34 h57
    $l_{2} $100$w_{2} $35.976$h_{1} $1.524
    $l_{3} $24.7$w_{3} $40$h_{2} $1.524
    $l_{4} $25.2$w_{4} $38$h_{3} $1.524
    $l_{5} $43.5$w_{5} $28.5$h_{4} $1.524
    $l_{6} $16.4$w_{6} $26.1$h_{5}$57
    $l_{7} $33$w_{7} $3.3$l_{13} $584.952
    $l_{8} $18.3$w_{8} $5.6$l_{12} $5.2
    $l_9 $15.8$l_{10} $16.4$l_{11 }$5.6
    下载: 导出CSV

    表 2  增益高于19 dBi的相关F-P天线对比

    Table 2.  Comparisons of F-P antennas with the realized gain higher than 19 dBi.

    文献极化馈源增益/dBi口径效率旁瓣/dB天线尺寸
    [7]线极化槽天线19.121.0%>–12.5π(3.2λ0)2 × 2.0λ0
    [18]线极化贴片天线21.025.0%–106.4λ0 × 6.4λ0 × 1.8λ0
    [23]圆极化槽天线20.024.7%–10π(3.2λ0)2 × 1.02λ0
    [24]圆极化贴片天线19.113.7%–206.8λ0 × 6.8λ0 × 0.5λ0
    本文左旋圆极化贴片天线21.436.6%–22.45.5λ0 × 5.5λ0 × 0.56λ0
    右旋圆极化21.335.8%–22.3
    下载: 导出CSV
  • [1]

    Deminov M G, Deminova G F 2020 Geomag. Aeron. 60 606Google Scholar

    [2]

    Sun Z X, Wang J Q, Yu L F, Gou W, Wang G L 2021 Res. Astron. Astrophys. 21 105Google Scholar

    [3]

    Zhang X G, Jiang W X, Jiang H L, Wang Q, Tian H W, Bai L, Luo Z J, Sun S, Luo Y, Qiu C W, Cui T J 2020 Nat. Electron. 3 165Google Scholar

    [4]

    王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波 2018 物理学报 67 204101Google Scholar

    Wang C, Li Y F, Shen Y, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2018 Acta Phys. Sin. 67 204101Google Scholar

    [5]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar

    [6]

    Zhu S S, Liu H W, Wen P 2019 IEEE Trans. Antennas Propag. 67 1952Google Scholar

    [7]

    Ge Y, Sun Z, Chen Z, Chen Y 2016 IEEE Antennas Wirel. Propag. Lett. 15 1889Google Scholar

    [8]

    郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐 2020 物理学报 69 244101Google Scholar

    Hao B, Yang B F, Gao J, Cao X Y, Yang H H, Li T 2020 Acta Phys. Sin. 69 244101Google Scholar

    [9]

    Zhu S S, Liu H W, Chen Z J 2021 J. Phys. D: Appl. Phys. 54 28LT02Google Scholar

    [10]

    郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪 2020 物理学报 69 234102Google Scholar

    Guo Z X, Cao X Y, Gao J, Li S J, Yang H H, Hao B 2020 Acta Phys. Sin. 69 234102Google Scholar

    [11]

    Liu Z, Liu S, Zhao X, Kong X, Huang Z, Bian B 2020 IEEE Trans. Antennas Propagat. 68 6497Google Scholar

    [12]

    Almutawa A T, Hosseini A, Jackson D R, Capolino F 2019 IEEE Trans. Antennas Propagat. 67 5163Google Scholar

    [13]

    Lu Y F, Lin Y C 2013 IEEE Trans. Antennas Propag. 61 5395Google Scholar

    [14]

    Foroozesh A, Shafai L 2010 IEEE Trans. Antennas Propagat. 58 258Google Scholar

    [15]

    Singh A K, Abegaonkar M P, Koul S K 2017 IEEE Antennas Wirel. Propag. Lett. 16 2388Google Scholar

    [16]

    Al A Y, Kishk A A 2020 IEEE Trans. Antennas Propagat. 19 1920Google Scholar

    [17]

    Zhou L, Duan X, Luo Z J, Zhou Y H, Chen X 2020 IEEE Trans. Antennas Propagat. 68 7601Google Scholar

    [18]

    Guo Q, Wong H 2020 IEEE Trans. Antennas Propagat. 68 564Google Scholar

    [19]

    Zhou L, Chen X, Duan X 2018 IEEE Trans. Antennas Propagat. 66 2061Google Scholar

    [20]

    Xie P, Wang G G, Zou X J, Zong B F 2021 IEEE Trans. Antennas Propagat. 69 6965Google Scholar

    [21]

    Amiri M A, Balanis C A, Birtcher C R, Barber G C 2020 IEEE Trans. Antennas Propagat. 68 7208Google Scholar

    [22]

    Foroozesh A, Shafai L 2011 IEEE Trans. Antennas Propagat. 59 4Google Scholar

    [23]

    Guo Q Y, Lin Q W, Wong H 2021 IEEE Trans. Antennas Propagat. 69 1179Google Scholar

    [24]

    Orr R, Goussetis G, Fusco V 2014 IEEE Trans. Antennas Propagat. 62 19Google Scholar

  • [1] 张翔宇, 刘会刚, 康明, 刘波, 刘海涛. 金属-介质-金属多层结构可调谐Fabry-Perot共振及高灵敏折射率传感. 物理学报, 2021, 70(14): 140702. doi: 10.7498/aps.70.20202058
    [2] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211914
    [3] 朱玥, 张子良, 杨彦佶, 薛荣峰, 崔苇苇, 陆波, 王娟, 陈田祥, 王于仨, 李炜, 韩大炜, 霍嘉, 胡渭, 李茂顺, 张艺, 祝宇轩, 刘苗, 赵晓帆, 陈勇. 硬X射线调制望远镜低能探测器量子效率标定. 物理学报, 2017, 66(11): 112901. doi: 10.7498/aps.66.112901
    [4] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [5] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [6] 张晨, 曹祥玉, 高军, 李思佳, 郑月军. 一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线. 物理学报, 2016, 65(13): 134205. doi: 10.7498/aps.65.134205
    [7] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [8] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [9] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [10] 刘红喜, 高军, 曹祥玉, 刘艳芳, 张迪, 李思佳. 一种基于开口谐振环的高增益端射天线设计. 物理学报, 2015, 64(23): 234101. doi: 10.7498/aps.64.234101
    [11] 赵一, 曹祥玉, 张迪, 姚旭, 李思佳, 杨欢欢, 李文强. 一种兼有高增益和宽带低散射特征的波导缝隙天线设计. 物理学报, 2014, 63(3): 034101. doi: 10.7498/aps.63.034101
    [12] 占昌和, 李天明, 蒙林, 李正红, 吴洋, 邵剑波. 基于离轴高增益速调管的X波段高功率合成技术研究. 物理学报, 2014, 63(23): 238405. doi: 10.7498/aps.63.238405
    [13] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [14] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [15] 夏步刚, 张德海, 赵鑫, 易敏, 黄健. 基于石英晶片镀膜工艺的Ka波段天线副反射面设计与实现. 物理学报, 2013, 62(20): 204103. doi: 10.7498/aps.62.204103
    [16] 刁志辉, 黄文彬, 邓舒鹏, 刘永刚, 彭增辉, 姚丽双, 宣丽. 基于低散射和高增益全息液晶/聚合物光栅的分布反馈式激光器. 物理学报, 2013, 62(3): 034202. doi: 10.7498/aps.62.034202
    [17] 王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂. 单光子调制锁定Fabry-Perot腔. 物理学报, 2012, 61(20): 204203. doi: 10.7498/aps.61.204203
    [18] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究. 物理学报, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [19] 施 卫, 王馨梅, 侯 磊, 徐 鸣, 刘 峥. 高增益双层组合GaAs光电导开关设计与实验研究. 物理学报, 2008, 57(11): 7185-7189. doi: 10.7498/aps.57.7185
    [20] 韩英魁, 王清月, 张志刚, 张伟力, 柴 路, 袁晓东, 黄小军. 飞秒啁啾脉冲放大系统中折叠反射式望远镜对脉冲波前的影响. 物理学报, 2005, 54(4): 1613-1618. doi: 10.7498/aps.54.1613
计量
  • 文章访问数:  7258
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 修回日期:  2021-11-09
  • 上网日期:  2022-02-18
  • 刊出日期:  2022-02-20

/

返回文章
返回