搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型Helmholtz型声子晶体的低频带隙及隔声特性

韩东海 张广军 赵静波 姚宏

引用本文:
Citation:

新型Helmholtz型声子晶体的低频带隙及隔声特性

韩东海, 张广军, 赵静波, 姚宏

Low-frequency bandgaps and sound isolation characteristics of a novel Helmholtz-type phononic crystal

Han Dong-Hai, Zhang Guang-Jun, Zhao Jing-Bo, Yao Hong
PDF
HTML
导出引用
  • 为了解决军用飞机舱室内产生的低频噪声问题, 构建了一种新型的Helmholtz型二维声子晶体, 该结构采用迷宫型开口通道, 并在结构加入了刚性振子. 研究发现, 该结构在晶格常数为62 mm条件下, 将第一低频带隙的下限降至15 Hz左右, 且在100 Hz频率左右形成一条宽度为93 Hz的带隙宽带, 表现出较好的低频隔声特性. 首先, 通过振型及声压场分析了其带隙成因, 采用“力-声类比”的方法建立了该结构的等效模型, 最后利用有限元法和传递矩阵法对第一低频的带隙范围进行了计算, 两种方法所得结果基本相符; 其次, 通过有限元法探究了晶格常数、空气通道长度及振子材料等结构参数对低频带隙的影响. 研究表明, 增加开口通道长度和晶格常数都会降低第一带隙下限, 增加振子材料密度能够有效降低第二带隙的上下限, 进一步揭示了该结构带隙形成的实质, 验证了等效模型的准确性. 该研究为低频噪声控制方面提供了一定的理论支持, 为低频声子晶体的设计提供了新的思路.
    In recent years, the vibration and noise reduction performance of military aircraft has become an important index to measure its performance. In order to solve the problem of low-frequency noise generated by military aircraft, a novel Helmholtz two-dimensional phononic crystal is constructed in this paper. The structure adopts maze-shaped air channel and adds rigid oscillators. On condition that the lattice constant is 62 mm, the lower limit of the first band gap is reduced to about 15 Hz. The structure has four complete band gaps in a range of 0–500 Hz, specifically, they being 15.223–17.464 Hz, 107.46–200.68 Hz, 231.18–310.68 Hz, and 341.14–404.49 Hz. In addition, the sound reduction index of the structure reaches 25 dB at 15 Hz, and two peaks higher than 150 dB appear at about 107 Hz and 231 Hz. which shows distinct sound insulation capability in the low-frequency range. It has engineering significance in controlling the low-frequency noise in the aircraft cabin. The cause of the band gap is explored by analyzing the vibration mode and sound pressure field. The “spring-oscillator” of the structure model is established by the method of “Mechanical-acoustic analogy”. The finite element method and transfer matrix method are used to calculate the upper limit and the lower limit of the first band gap. It is shown that for the first gap of the structure, the results obtained by the two methods are similar, which indicates the correctness of the model hypothesis. Secondly, the effects of structural parameters such as the lattice constant, the length of the air channel and the oscillator material on the first band gap are investigated by finite element method and equivalent model method. It is obtained that the increase of the length of air channel and lattice constant will reduce the lower limit of the first band gap, with other structural parameters remaining unchanged. Moreover, the increase of the density of the oscillator material can effectively reduce the upper limit and lower limit of the second band gap, which further reveals the essence of the formation of the band gap of the structure and verifies the accuracy of the equivalent model. This study provides theoretical support for low frequency noise control and broadens the design of low-frequency phononic crystals.
      通信作者: 赵静波, chjzjb@163.com
    • 基金项目: 国家自然科学基金(批准号: 11504429)资助的课题.
      Corresponding author: Zhao Jing-Bo, chjzjb@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504429).
    [1]

    吴永祥, 丁传东 1998 航天医学与医学工程 11 54

    Wu Y X, Ding C D 1998 Space Med. Med. Eng. 11 54

    [2]

    Kuo C Y, Hung C L, Chen H C, Shih C P, Lu R H, Chen C W, Hung L W, Lin Y C, Chen H K, Chu D M, Lin Y Y, Chen Y C, Wang C H 2021 Int. J. Environ. Res. Public. Health. 18 2982Google Scholar

    [3]

    Wolfe H F, Camden M P, Byrd L W, Paul D B, Simmons L W 2015 J. Aircr. 37 319

    [4]

    Bagherzadeh S A, Salehi M 2021 Appl. Acoust. 178 108020Google Scholar

    [5]

    Atak O, Huybrechs D, Pluymers B, Desmet W 2014 J. Sound Vibr. 333 3367Google Scholar

    [6]

    张佳龙, 姚宏, 杜军, 赵静波, 董亚科, 祁鹏山 2016 硅酸盐学报 44 1440

    Zhang J L, Yao H, Du J, Zhao J B, DongY K, Qi P S 2016 J. Chin. Ceram. Soc. 44 1440

    [7]

    Han D H, Zhao J B, Zhang G J, Yao H 2021 Symmetry 13 1379Google Scholar

    [8]

    Li X, Ning S, Liu Z, Yan Z, Luo C, Zhuang Z 2019 Comput. Methods Appl. Mech. Engrg. 361 112737

    [9]

    Chen L, Guo Y, Yi H 2021 Phys. Lett. A 388 127054Google Scholar

    [10]

    Shao H, He H, He C, Chen G 2020 J. Mater. Res. 35 3021Google Scholar

    [11]

    田源, 葛浩, 卢明辉, 陈延峰 2019 物理学报 68 194301Google Scholar

    Tian Y, Ge H, Lu M H, Chen Y F 2019 Acta Phys. Sin. 68 194301Google Scholar

    [12]

    廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬 2018 物理学报 67 214208Google Scholar

    Liao T, Sun X W, Song T, Tian J H, Kang T F, Sun W B 2018 Acta Phys. Sin. 67 214208Google Scholar

    [13]

    Chen J S, Chen Y B, Cheng Y H, Chou L C 2020 Phys. Lett. A 384 126887Google Scholar

    [14]

    Kim M J 2019 Int. J. Mod. Phys. B 33 1950138Google Scholar

    [15]

    Gao N, Qu S, Li J, Wang J, Chen W 2021 Int. J. Mech. Sci. 208 106695Google Scholar

    [16]

    Wang Z G, Lee S H, Kim C K, Park C M, Nahm K, Nikitov S A 2008 J. Appl. Phys. 103 064907Google Scholar

    [17]

    Liu C R, Wu J H, Chen X, Ma F Y 2019 J. Phys. D:Appl. Phys. 52 105302Google Scholar

    [18]

    陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜 2019 物理学报 68 084302Google Scholar

    Chen X, Yao H, Zhao J B, Zhang S, He Z H, Jiang J N 2019 Acta Phys. Sin. 68 084302Google Scholar

    [19]

    Dai H, Liu T, Jiao J, Xia B, Yu D 2017 J. Appl. Phys. 121 135105Google Scholar

    [20]

    Li Y, Chen T, Wang X, Yu K, Song R 2015 Physica B (Amsterdam, Neth.) 456 261Google Scholar

    [21]

    Elford D P, Chalmers L, Kusmartsev F V, Swallowe G M 2011 J. Acoust. Soc. Am. 130 2746Google Scholar

  • 图 1  (a) 新型声子晶体元胞横截面; (b)新型声子晶体周期排列结构

    Fig. 1.  (a) Cross section of the phononic crystal structure; (b) periodic arrangement structure of the phononic crystal.

    图 2  正方形晶格不可约Brillouin区

    Fig. 2.  The irreducible Brillouin region of the square lattice.

    图 3  隔声量仿真示意图

    Fig. 3.  Schematic diagram of sound insulation volume simulation.

    图 4  (a) 结构带隙图; (b) 隔声曲线

    Fig. 4.  (a) Band diagram; (b) transmission spectrum.

    图 5  (a) A点处声场压力图; (b) B点处声场压力图; (c) A点处振型图; (d) B点处振型图

    Fig. 5.  (a) The sound pressure distribution diagram of point A; (b) the sound pressure distribution diagram of point B; (c) the vibration mode diagram of point A; (d) the vibration mode diagram of point B.

    图 6  (a) 平直带处声场压力图; (b) 平直带处声场振型图

    Fig. 6.  (a) The sound pressure distribution diagram of the straight belt; (b) the vibration mode diagram of the straight belt.

    图 7  (a)带隙下限系统示意图; (b)带隙上限系统示意图

    Fig. 7.  (a) The system corresponding to the lower limit of band gap; (b) the system corresponding to upper limit of the band gap.

    图 8  晶格常数a对第一低频带隙的影响

    Fig. 8.  Influence of the lattice constant a on the first band gap.

    图 9  空气通道长度l2对第一低频带隙的影响

    Fig. 9.  Influence of the length of air channel l2 on the first band gap.

    图 10  振子材料对第一、二低频带隙的影响

    Fig. 10.  Influence of oscillator material on the first and second band gaps.

    表 1  两种方法所得的带隙范围

    Table 1.  The low-frequency band gap range obtained by the two methods.

    计算方法第一带隙下限第一带隙上限
    有限元法15.22317.464
    传递矩阵法15.95917.131
    误差/%4.831.91
    下载: 导出CSV

    表 2  材料参数

    Table 2.  Material parameters.

    材料名称环氧树脂
    密度/(kg·m–3)89507780273017501180
    杨氏模量/(1010 Pa)16.4621.067.7623.010.45
    泊松比0.3260.3000.3520.3000.370
    下载: 导出CSV
  • [1]

    吴永祥, 丁传东 1998 航天医学与医学工程 11 54

    Wu Y X, Ding C D 1998 Space Med. Med. Eng. 11 54

    [2]

    Kuo C Y, Hung C L, Chen H C, Shih C P, Lu R H, Chen C W, Hung L W, Lin Y C, Chen H K, Chu D M, Lin Y Y, Chen Y C, Wang C H 2021 Int. J. Environ. Res. Public. Health. 18 2982Google Scholar

    [3]

    Wolfe H F, Camden M P, Byrd L W, Paul D B, Simmons L W 2015 J. Aircr. 37 319

    [4]

    Bagherzadeh S A, Salehi M 2021 Appl. Acoust. 178 108020Google Scholar

    [5]

    Atak O, Huybrechs D, Pluymers B, Desmet W 2014 J. Sound Vibr. 333 3367Google Scholar

    [6]

    张佳龙, 姚宏, 杜军, 赵静波, 董亚科, 祁鹏山 2016 硅酸盐学报 44 1440

    Zhang J L, Yao H, Du J, Zhao J B, DongY K, Qi P S 2016 J. Chin. Ceram. Soc. 44 1440

    [7]

    Han D H, Zhao J B, Zhang G J, Yao H 2021 Symmetry 13 1379Google Scholar

    [8]

    Li X, Ning S, Liu Z, Yan Z, Luo C, Zhuang Z 2019 Comput. Methods Appl. Mech. Engrg. 361 112737

    [9]

    Chen L, Guo Y, Yi H 2021 Phys. Lett. A 388 127054Google Scholar

    [10]

    Shao H, He H, He C, Chen G 2020 J. Mater. Res. 35 3021Google Scholar

    [11]

    田源, 葛浩, 卢明辉, 陈延峰 2019 物理学报 68 194301Google Scholar

    Tian Y, Ge H, Lu M H, Chen Y F 2019 Acta Phys. Sin. 68 194301Google Scholar

    [12]

    廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬 2018 物理学报 67 214208Google Scholar

    Liao T, Sun X W, Song T, Tian J H, Kang T F, Sun W B 2018 Acta Phys. Sin. 67 214208Google Scholar

    [13]

    Chen J S, Chen Y B, Cheng Y H, Chou L C 2020 Phys. Lett. A 384 126887Google Scholar

    [14]

    Kim M J 2019 Int. J. Mod. Phys. B 33 1950138Google Scholar

    [15]

    Gao N, Qu S, Li J, Wang J, Chen W 2021 Int. J. Mech. Sci. 208 106695Google Scholar

    [16]

    Wang Z G, Lee S H, Kim C K, Park C M, Nahm K, Nikitov S A 2008 J. Appl. Phys. 103 064907Google Scholar

    [17]

    Liu C R, Wu J H, Chen X, Ma F Y 2019 J. Phys. D:Appl. Phys. 52 105302Google Scholar

    [18]

    陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜 2019 物理学报 68 084302Google Scholar

    Chen X, Yao H, Zhao J B, Zhang S, He Z H, Jiang J N 2019 Acta Phys. Sin. 68 084302Google Scholar

    [19]

    Dai H, Liu T, Jiao J, Xia B, Yu D 2017 J. Appl. Phys. 121 135105Google Scholar

    [20]

    Li Y, Chen T, Wang X, Yu K, Song R 2015 Physica B (Amsterdam, Neth.) 456 261Google Scholar

    [21]

    Elford D P, Chalmers L, Kusmartsev F V, Swallowe G M 2011 J. Acoust. Soc. Am. 130 2746Google Scholar

  • [1] 王燕萍, 蔡飞燕, 李飞, 张汝钧, 李永川, 王金萍, 张欣, 郑海荣. 基于二维声子晶体板共振声场的微粒操控. 物理学报, 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [2] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真. 物理学报, 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [3] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [4] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. Helmholtz腔与弹性振子耦合结构带隙. 物理学报, 2019, 68(8): 084302. doi: 10.7498/aps.68.20182102
    [5] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. 薄膜与Helmholtz腔耦合结构低频带隙. 物理学报, 2019, 68(21): 214208. doi: 10.7498/aps.68.20190673
    [6] 姜久龙, 姚宏, 杜军, 赵静波, 邓涛. 双开口Helmholtz局域共振周期结构低频带隙特性研究. 物理学报, 2017, 66(6): 064301. doi: 10.7498/aps.66.064301
    [7] 高东宝, 刘选俊, 田章福, 周泽民, 曾新吾, 韩开锋. 一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究. 物理学报, 2017, 66(1): 014307. doi: 10.7498/aps.66.014307
    [8] 陈阿丽, 梁同利, 汪越胜. 二维8重固-流型准周期声子晶体带隙特性研究. 物理学报, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [9] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究. 物理学报, 2014, 63(3): 034305. doi: 10.7498/aps.63.034305
    [10] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波. 物理学报, 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [11] 高东宝, 曾新吾, 周泽民, 田章福. 一维亥姆霍兹共振腔声子晶体中缺陷模式的实验研究. 物理学报, 2013, 62(9): 094304. doi: 10.7498/aps.62.094304
    [12] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [13] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [14] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [15] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用. 物理学报, 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [16] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究. 物理学报, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [17] 王 刚, 温激鸿, 刘耀宗, 郁殿龙, 温熙森. 大弹性常数差二维声子晶体带隙计算中的集中质量法. 物理学报, 2005, 54(3): 1247-1252. doi: 10.7498/aps.54.1247
    [18] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [19] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [20] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法. 物理学报, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
计量
  • 文章访问数:  4681
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2022-02-03
  • 上网日期:  2022-03-01
  • 刊出日期:  2022-06-05

/

返回文章
返回