搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

显示设备防蓝光模式和色域的关系

王贯 顾春 许立新

引用本文:
Citation:

显示设备防蓝光模式和色域的关系

王贯, 顾春, 许立新

Relationship between anti-blue hazard mode and color gamut of display devices

Wang Guan, Gu Chun, Xu Li-Xin
PDF
HTML
导出引用
  • 基于新型光源的显示设备以大色域、高亮度、高解析度等优点成为了市场主流. 蓝光作为三基色之一, 是显示系统不可或缺的部分, 它的波长、光谱宽度、亮度等参数影响着显示系统的方方面面. 同时, 过强的蓝光会损害人眼的视网膜细胞并影响生物节律. 如何减少蓝光危害是设计显示系统时需要考虑的重要问题. 以手机、电视屏幕为代表的显示设备是人机交互的重要媒介, 为了减少其中的蓝光危害, 在设备中通常都设有防蓝光模式. 这种模式会影响到显示设备的色域. 基于此, 测量显示系统中色域和蓝光危害随着防蓝光模式的变化过程是有必要的. 我们提出了一种测量显示设备特征点获得立体色域的理论. 以目前市面上几种主流手机作为实验样本测量立体色域, 结合光谱获得蓝光危害值, 提出色域和蓝光危害的兑换比例这一测量标准, 以评估防蓝光模式的质量.
    Display devices based on new generation of light source have become the mainstream of the market due to the advantages of large color gamut, high brightness, and high resolution. Blue light, as one of the three primary colors, is an indispensable part of the display system. Its parameters, such as wavelength, spectral width, brightness affect the color gamut of the display system from different aspects. Strong blue light can damage the retinal cells of the human eye and affect the biological rhythm. Therefore, it is needed to consider how to reduce the blue light hazard when designing the display system. Display devices, represented by mobile phones and TV are an important part for human-computer interaction. In order to reduce the blue light hazard, anti-blue hazard mode is usually used and this mode will affect the color gamut of display device. To measure the color gamut and blue light hazards in a display system with the blue light protection mode is necessary. We propose a theory of measuring the characteristic points of display devices to obtain the stereoscopic color gamut. Several mainstream mobile phones currently on the market are used as experimental samples to measure the stereoscopic color gamut and blue light hazard value. Based on the results, we propose the measurement standard of the conversion ratio between the color gamut and the blue light hazard to evaluate the quality of the anti-blue hazard mode.
      通信作者: 顾春, guchun@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFF0307804)
      Corresponding author: Gu Chun, guchun@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFF0307804)
    [1]

    Sun Y, Zhang C, Yang Y L, Ma H M, Sun Y B 2019 Curr. Opt. Photonics 3 590

    [2]

    Wu T Z, Sher C W, Lin Y, Lee C F, Liang S J, Lu Y J, Huang C S W, Guo W J, Kuo H C, Chen Z 2018 Appl. Sci. 8 1557Google Scholar

    [3]

    Hosoumi S, Yamaguchi T, Inoue H, Nomura S, Yamaoka R, Sasaki T, Seo S 2017 SID Symposium, Seminar, and Exhibition 2017, Display Week 2017 Los Angeles U.S.A. May 21–26, 2017 p13

    [4]

    Lin S Y, Tan G J, Yu J H, Chen E G, Weng Y L, Zhou X T, Xu S, Yan F Q, Guo T L 2019 Opt. Express 27 28480Google Scholar

    [5]

    Zhao J Y, Yan Y L, Gao Z H, Du Y X, Dong H Y, Yao J N, Zhao Y S 2019 Nat. Commun. 10 870Google Scholar

    [6]

    ITU-R Recommendation BT-2020 2012 Parameter Values for Ultra-high Definition Television Systems for Production and International Programme Exchange

    [7]

    ITU-R Recommendation BT-709 1990 Parameter values for the HDTV standards for production and international programme exchange

    [8]

    灯和灯系统的光生物安全 第2部分: 非激光光辐射安全相关的制造要求指南

    GB/T 30117.2—2013 2013 Photobiological Safety of Lamps and Lamp Systems—Part 2: Guidance on Manufacturing Requirements Relating to Non-laser Optical Radiation Safety (in Chinese)

    [9]

    BSI Standards Publication, PD IEC-TR 62741-2-2009 2009 Photobiological Safety of Lamps and Lamp Systems—Part 2: Guidance on Manufacturing Requirements Relating to Non-laser Optical Radiation Safety

    [10]

    CIE 2000 CIE Collection in Photobiology and Photochemistry 2000 138/1 CIE TC 6-14 report: Blue-light Photochemical Retinal Hazard

    [11]

    Noell W K, Walker V S, Kang B S, Berman S 1966 Invest. Ophth. 5 450

    [12]

    Ham W T, Mueller H A, Ruffolo J J, Clarke A M 1979 Photochem. Photobiol. 29 735Google Scholar

    [13]

    Wenzel A, Grimm C, Samardzijia M, Reme C E 2005 Prog. Retin. Eye Res. 24 275Google Scholar

    [14]

    Enezi J A, Revell V, Brown T, Wynne J, Schlangen L, Lucas R 2011 J. Biol. Rhythms 26 314Google Scholar

    [15]

    Brainard G C, Hanifin J P, Greeson J M, Byrne B, Glickman G, Gerner E, Rollag M D 2001 J. Neurosci. 21 6405Google Scholar

    [16]

    Baczynska K, Price L 2013 Lighting Res. Technol. 45 40Google Scholar

    [17]

    刘婕 2014 硕士学位论文 (上海: 复旦大学)

    Liu J 2014 M. S. Thesis (Shanghai: Fudan University) (in Chinese)

    [18]

    Nie J X, Chen Z Z, Jiao F, Zhan J L, Chen Y F, Chen Y Y, Pan Z J, Kang X N, Wang Y Z, Wang Q, Zhou T H, Dang W M, Dong W T, Zhou S Z, Yu X, Zhang G Y, Shen B 2021 Opt. Laser Technol. 135 106709Google Scholar

    [19]

    Zhang J J, Guo W H, Xie B, Yu X J, Luo X B, Zhang T, Yu Z H, Wang H, Jin X 2017 Opt. Laser Technol. 94 193Google Scholar

    [20]

    Wang G, Yang Y H, Dong T H, Gu C, Xu L C 2018 Fifth International Symposium on Laser Interaction with Matter (Changsha, China) November 11–13, 2018

    [21]

    王聪 2020 硕士学位论文(合肥: 中国科学技术大学)

    Wang C 2020 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [22]

    中国电子技术标准化研究赛西实验室 2018 激光电视视觉健康测试证书TC(2018)016

    CESI Laboratory 2018 Testing Certificate of laser TV vision health TC(2018)016 (in Chinese)

    [23]

    Chen H W, Lee J H, Lin B Y, Chen S, Wu S T 2018 Light Sci. Appl. 7 17168Google Scholar

  • 图 1  蓝光视觉危害、非视觉危害与波长之间的关系

    Fig. 1.  Relationship between blue light visual hazards, non-visual hazards and wavelength.

    图 2  (a) RGB立体框和(b) RGB立体框在CIELAB空间中的位置

    Fig. 2.  (a) RGB three-dimension frame and (b) its position in CIELAB color space.

    图 3  (a)设备蓝光模式图和(b)20张测试用图片

    Fig. 3.  (a)The screenshot of anti-blue hazard mode and (b) the figure of 20 experimental pictures.

    图 4  6台显示设备的色域、两种蓝光危害同防蓝光模式强度的关系, 蓝光危害通过白场光谱分布计算得到

    Fig. 4.  The relationship between the color gamut of six display devices, two kinds of blue light hazards under the strength of anti-blue hazard mode. The blue light hazard is calculated from the white field spectral distribution.

    图 5  6台显示设备的光谱功率分布同防蓝光模式强度的关系

    Fig. 5.  The relationship between the spectral power distribution of six display devices and the strength of anti-blue hazard mode.

    图 6  6台显示设备的色域, 两种蓝光危害比例同防蓝光模式强度的关系

    Fig. 6.  The relationship between the ratio of the color gamut of six display devices, the ratio of two kinds of blue light hazards under the strength of anti-blue hazard mode.

    图 7  不同显示设备的$ {R}_{\text{V}} $-$ {R}_{\text{B}} $以及$ {R}_{\text{V}} $-$ {R}_{\text{N}} $曲线

    Fig. 7.  $ {R}_{\text{V}} $-$ {R}_{\text{B}}{R}_{B} $ and $ {R}_{\text{V}} $-$ {R}_{\text{N}} $ curves of different display devices.

    图 8  显示设备的色域, 色温同防蓝光模式强度的关系

    Fig. 8.  The relationship among the color gamut, color temperature of the display device and the intensity of the anti-blue light mode.

    图 9  防蓝光模式强度的变化对激光电视参数的影响 (a) 光谱强度分布, 三基色中心波长分别为464 nm, 520 nm, 660 nm; (b)色域及两种蓝光危害, 蓝光危害通过白场光谱强度分布计算得到; $ \left(\text{c}\right){R}_{\text{V}}, {R}_{\text{B}}, {R}_{\text{N}} $参数; (d)色域-色温曲线

    Fig. 9.  The influence of the strength of the anti-blue hazard mode on the parameters of laser TV: (a)Spectral power distribution, the peak wavelength of three primaries are 464 nm, 520 nm and 660 nm;(b)color gamut and two kinds of blue hazard, the blue light hazard is calculated from the white field spectral distribution; (c)$ {R}_{\text{V}}, {R}_{\text{B}}, {R}_{\text{N}} $ parameter;(d) color gamut-color temperature curve.

    图 10  激光电视和实验设备的对比图 (a)色域与视觉蓝光危害的兑换比例; (b)色域与非视觉蓝光危害的兑换比例; (c)设备色域

    Fig. 10.  The comparison of laser TV and experimental device: (a)Conversion ratio between color gamut and visual blue light hazard; (b) conversion ratio between color gamut and non-visual blue light hazard; (c)color gamut.

    表 1  $ {L}_{\text{B}} $$ {E}_{\text{B}} $与蓝光危害等级的关系

    Table 1.  The relationship between $ {L}_{\text{B}} $, $ {E}_{\text{B}} $ and the blue light hazard level.

    危害等级IR0IR1IR2IR3
    ${{L} }_{\rm{B} }/$(${\rm{W} }{\cdot}{\rm{m} }^{-2}{\cdot} {\rm{s}{\rm{r} } }^{-1}$) ≤ 100${100—10}^{4}$${10}^{4}—4\times {10}^{6}$ > $ 4\times {10}^{6} $
    ${{E} }_{\rm{B} }/$(${\rm{W} }{\cdot}{\rm{m} }^{-2}$) ≤ 800${800—10}^{3}$${10}^{3}—4\times {10}^{5}$ > $ 4\times {10}^{5} $
    下载: 导出CSV

    表 2  几种设备的相关参数

    Table 2.  The parameters of experimental device.

    设备编号屏幕种类发布年份
    (1)液晶2019
    (2)OLED2020
    (3)OLED2020
    (4)液晶2019
    (5)OLED2021
    (6)LED2018
    下载: 导出CSV

    表 3  6台显示器色域和两种蓝光危害比例的线性拟合及相关系数

    Table 3.  Linear fitting and correlation coefficients of 6 display devices, between the ratio of color gamut and the ratio of two kinds of blue light hazards.

    设备编号$ {\boldsymbol{R}}_{\bf{V}} $-$ {\boldsymbol{R}}_{\bf{B}} $斜率相关系数$ {\boldsymbol{R}}_{\bf{V}} $-$ {\boldsymbol{R}}_{\bf{N}} $斜率相关系数
    (1)2.34970.92651.77960.9511
    (2)1.45910.99691.20030.9955
    (3)1.73350.97481.38750.9788
    (4)1.78650.99431.37260.9970
    (5)1.58590.92421.25320.9598
    (6)1.26950.92231.07240.9513
    下载: 导出CSV
  • [1]

    Sun Y, Zhang C, Yang Y L, Ma H M, Sun Y B 2019 Curr. Opt. Photonics 3 590

    [2]

    Wu T Z, Sher C W, Lin Y, Lee C F, Liang S J, Lu Y J, Huang C S W, Guo W J, Kuo H C, Chen Z 2018 Appl. Sci. 8 1557Google Scholar

    [3]

    Hosoumi S, Yamaguchi T, Inoue H, Nomura S, Yamaoka R, Sasaki T, Seo S 2017 SID Symposium, Seminar, and Exhibition 2017, Display Week 2017 Los Angeles U.S.A. May 21–26, 2017 p13

    [4]

    Lin S Y, Tan G J, Yu J H, Chen E G, Weng Y L, Zhou X T, Xu S, Yan F Q, Guo T L 2019 Opt. Express 27 28480Google Scholar

    [5]

    Zhao J Y, Yan Y L, Gao Z H, Du Y X, Dong H Y, Yao J N, Zhao Y S 2019 Nat. Commun. 10 870Google Scholar

    [6]

    ITU-R Recommendation BT-2020 2012 Parameter Values for Ultra-high Definition Television Systems for Production and International Programme Exchange

    [7]

    ITU-R Recommendation BT-709 1990 Parameter values for the HDTV standards for production and international programme exchange

    [8]

    灯和灯系统的光生物安全 第2部分: 非激光光辐射安全相关的制造要求指南

    GB/T 30117.2—2013 2013 Photobiological Safety of Lamps and Lamp Systems—Part 2: Guidance on Manufacturing Requirements Relating to Non-laser Optical Radiation Safety (in Chinese)

    [9]

    BSI Standards Publication, PD IEC-TR 62741-2-2009 2009 Photobiological Safety of Lamps and Lamp Systems—Part 2: Guidance on Manufacturing Requirements Relating to Non-laser Optical Radiation Safety

    [10]

    CIE 2000 CIE Collection in Photobiology and Photochemistry 2000 138/1 CIE TC 6-14 report: Blue-light Photochemical Retinal Hazard

    [11]

    Noell W K, Walker V S, Kang B S, Berman S 1966 Invest. Ophth. 5 450

    [12]

    Ham W T, Mueller H A, Ruffolo J J, Clarke A M 1979 Photochem. Photobiol. 29 735Google Scholar

    [13]

    Wenzel A, Grimm C, Samardzijia M, Reme C E 2005 Prog. Retin. Eye Res. 24 275Google Scholar

    [14]

    Enezi J A, Revell V, Brown T, Wynne J, Schlangen L, Lucas R 2011 J. Biol. Rhythms 26 314Google Scholar

    [15]

    Brainard G C, Hanifin J P, Greeson J M, Byrne B, Glickman G, Gerner E, Rollag M D 2001 J. Neurosci. 21 6405Google Scholar

    [16]

    Baczynska K, Price L 2013 Lighting Res. Technol. 45 40Google Scholar

    [17]

    刘婕 2014 硕士学位论文 (上海: 复旦大学)

    Liu J 2014 M. S. Thesis (Shanghai: Fudan University) (in Chinese)

    [18]

    Nie J X, Chen Z Z, Jiao F, Zhan J L, Chen Y F, Chen Y Y, Pan Z J, Kang X N, Wang Y Z, Wang Q, Zhou T H, Dang W M, Dong W T, Zhou S Z, Yu X, Zhang G Y, Shen B 2021 Opt. Laser Technol. 135 106709Google Scholar

    [19]

    Zhang J J, Guo W H, Xie B, Yu X J, Luo X B, Zhang T, Yu Z H, Wang H, Jin X 2017 Opt. Laser Technol. 94 193Google Scholar

    [20]

    Wang G, Yang Y H, Dong T H, Gu C, Xu L C 2018 Fifth International Symposium on Laser Interaction with Matter (Changsha, China) November 11–13, 2018

    [21]

    王聪 2020 硕士学位论文(合肥: 中国科学技术大学)

    Wang C 2020 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [22]

    中国电子技术标准化研究赛西实验室 2018 激光电视视觉健康测试证书TC(2018)016

    CESI Laboratory 2018 Testing Certificate of laser TV vision health TC(2018)016 (in Chinese)

    [23]

    Chen H W, Lee J H, Lin B Y, Chen S, Wu S T 2018 Light Sci. Appl. 7 17168Google Scholar

  • [1] 邰建鹏, 郭伟玲, 李梦梅, 邓杰, 陈佳昕. GaN基微缩化发光二极管尺寸效应和阵列显示. 物理学报, 2020, 69(17): 177301. doi: 10.7498/aps.69.20200305
    [2] 潘祚坚, 陈志忠, 焦飞, 詹景麟, 陈毅勇, 陈怡帆, 聂靖昕, 赵彤阳, 邓楚涵, 康香宁, 李顺峰, 王琦, 张国义, 沈波. 面向显示应用的微米发光二极管外延和芯片关键技术综述. 物理学报, 2020, 69(19): 198501. doi: 10.7498/aps.69.20200742
    [3] 梅屹峰, 唐远河, 梅小宁, 刘汉臣, 刘骞, 余洋, 李宁远, 高恒. 基于长余辉材料的激光书写和显示. 物理学报, 2016, 65(17): 170701. doi: 10.7498/aps.65.170701
    [4] 曾超, 高洪跃, 刘吉成, 于瀛洁, 姚秋香, 刘攀, 郑华东, 曾震湘. 动态全息三维显示研究最新进展. 物理学报, 2015, 64(12): 124215. doi: 10.7498/aps.64.124215
    [5] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [6] 夏军, 常琛亮, 雷威. 基于液晶空间光调制器的全息显示. 物理学报, 2015, 64(12): 124213. doi: 10.7498/aps.64.124213
    [7] 武宇, 易仕和, 何霖, 全鹏程, 朱杨柱. 基于流动显示的压缩拐角流动结构定量研究. 物理学报, 2015, 64(1): 014703. doi: 10.7498/aps.64.014703
    [8] 辛成运, 程晓舫, 张忠政. 基于有限立体角测量的谱色测温法. 物理学报, 2013, 62(3): 030702. doi: 10.7498/aps.62.030702
    [9] 吕江涛, 赵玉倩, 宋爱娟, 杨琳娟, 张杨宇, 刘艳, 谷琼婵, 姜潇潇, 马振鹤, 王凤文, 司光远. 超小间距纳米柱阵列中的谐振调制. 物理学报, 2013, 62(23): 237806. doi: 10.7498/aps.62.237806
    [10] 王芳, 赵星, 杨勇, 方志良, 袁小聪. 基于人眼视觉的集成成像三维显示分辨率的比较. 物理学报, 2012, 61(8): 084212. doi: 10.7498/aps.61.084212
    [11] 张宝龙, 李丹, 戴凤智, 杨世凤, 郭海成. 彩色滤光膜硅覆液晶微显示器的三维光学建模. 物理学报, 2012, 61(4): 040701. doi: 10.7498/aps.61.040701
    [12] 郑华东, 于瀛洁, 代林茂, 王涛. 彩色全息显示中液晶空间光调制器位相调制偏差的矫正方法. 物理学报, 2010, 59(9): 6145-6151. doi: 10.7498/aps.59.6145
    [13] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [14] 马燕萍, 尚学府, 顾智企, 李振华, 王 淼, 徐亚伯. 单壁碳纳米管在场发射显示器中的应用研究. 物理学报, 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [15] 袁保山, 游天雪, 刘 莉, 李芳著, 杨青巍, 冯北滨. HL-2A等离子体形状实时显示系统. 物理学报, 2006, 55(5): 2403-2408. doi: 10.7498/aps.55.2403
    [16] 李新贝, 张方辉, 王秀峰. 表面传导电子发射显示器件电场分布的理论研究. 物理学报, 2006, 55(11): 6141-6146. doi: 10.7498/aps.55.6141
    [17] 刘键, 谢居山, 冯尚婷, 张光寅, 吴仲康. α—LiIO3准一维离子电导空间电荷沉积线的直观显示. 物理学报, 1987, 36(9): 1199-1202. doi: 10.7498/aps.36.1199
    [18] 马可军, 俞振中, 金刚, 曹菊英. HCl—Fe+++溶液显示InSb{111}晶面的位错蚀坑. 物理学报, 1982, 31(9): 1285-1288. doi: 10.7498/aps.31.1285
    [19] 张森, 冯国良, 蔚樟富, 顾根青. X射线三维图象显示. 物理学报, 1981, 30(9): 1264-1269. doi: 10.7498/aps.30.1264
    [20] 冯端, 闵乃本, 李齐. 用浸蚀法显示钼单晶中的位错线与网络. 物理学报, 1963, 19(7): 475-476. doi: 10.7498/aps.19.475
计量
  • 文章访问数:  5120
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 修回日期:  2022-01-26
  • 上网日期:  2022-02-21
  • 刊出日期:  2022-05-20

/

返回文章
返回