-
为解决非线性声表面波的求解难题, 本文从二阶非线性各向同性介质的超弹性本构方程出发, 采用位移势函数法, 建立二维表面波的非线性势函数控制方程; 通过微扰法推导非线性表面波的准线性解和绝对非线性系数, 讨论表面波二次谐波解的主要组成部分; 并建立模拟非线性表面波传播的有限元模型, 位移幅值的仿真结果与理论符合良好, 验证了本文非线性表面波理论的准确性. 根据微扰解的数值结果, 探讨了非线性表面波的传播以及非线性系数的特性, 结果表明: 表面波二次谐波由累积项及非累积项组成, 前者与表面波纵波分量自相互作用相关, 但当初始条件和传播距离相同时, 该部分谐波幅值比纯纵波的二次谐波幅值大; 此外, 纵波和表面波的非线性系数存在正比关系, 该比例关系由材料的二阶弹性系数确定. 本文探究的非线性表面波的传播特性及其绝对非线性系数的定义表达式, 对指导非线性表面波的实际应用具有一定意义.The properties of ultrasonic nonlinear surface wave in the quasilinear region are investigated. In this work the governing equation of particle displacement potential is employed for surface wave in isotropic elastic solid with quadratic nonlinearity. Then, the quasilinear solution of the nonlinear surface wave is obtained by the perturbation method, and the absolute nonlinear parameter of the surface wave is derived. Subsequently, the main components of the second harmonic surface wave solution are discussed. A finite element model for the propagating nonlinear surface wave is developed, and simulation results of the nonlinear surface wave displacements agree well with the theoretical solutions, which indicates that the proposed theory is effective. Finally, the properties of wave propagation and the characteristic of the nonlinear parameter for the surface wave are analyzed based on the theoretical solutions. It is found that the second harmonic surface wave consists of cumulative and non-cumulative displacement terms. The cumulative displacement term is related to the self-interaction of the longitudinal wave component of the surface wave. However, its amplitude is larger than that of the pure longitudinal wave when the initial excitation conditions and propagation distances are the same. The nonlinear parameters for surface and longitudinal waves are related to each other, and an explicit relationship is found, which can be determined by the second-order elastic coefficients of the material. The propagation properties of nonlinear surface waves and the measurement method of absolute nonlinear parameters are also discussed, which will benefit the practical application of nonlinear surface waves.
-
Keywords:
- nonlinear surface wave /
- perturbation theory /
- nonlinear parameter /
- finite element modeling simulation
[1] 周正干, 刘斯明 2011 机械工程学报 47 2
Zhou Z G, Liu S M 2011 J. Mech. Eng. 47 2
[2] Huang Y, Wang X, Gong X, Wu H, Zhang D, Zhang D 2020 Sci. Rep. 10 1
[3] Matlack K H, Kim J Y, Jacobs L J, Qu J 2015 J. Nondestr. Eval. 34 273Google Scholar
[4] 陈海霞, 林书玉 2021 物理学报 70 114302Google Scholar
Chen H X, Lin S Y 2021 Acta Phys. Sin. 70 114302Google Scholar
[5] Zhang S, Li X, Chen C, Jeong H, Xu G 2019 J. Nondestr. Eval. 38 88Google Scholar
[6] Liu Y, He A, Liu J, Mao Y, Liu X 2020 Chin. Phys. B 29 054301Google Scholar
[7] Li W, Lan Z, Hu N, Deng M 2021 Ultrasonics 113 106356Google Scholar
[8] Zhang J, Xuan F Z, Yang F 2013 J. NonCryst. Solids 378 101Google Scholar
[9] Guo S, Lei Z, Mirshekarloo M S, Chen S, Yi F C, Zheng Z W, Shen Z, Liu H, Yao K 2016 Mater. Sci. Eng. A 669 41Google Scholar
[10] Kim G, Park S, Kim J Y, Kurtis K E, Hayes N W, Jacobs L J 2018 Constr. Build. Mater. 186 1114Google Scholar
[11] Torello D, Selby N, Kim J Y, Qu J, Jacobs L 2017 Ultrasonics 81 107Google Scholar
[12] 张世功, 吴先梅, 张碧星, 安志武 2016 物理学报 65 104301Google Scholar
Zhang S G, Wu X M, Zhang B X, An Z W 2016 Acta Phys. Sin. 65 104301Google Scholar
[13] Kube C M, Argulles A P 2017 J. Acoust. Soc. Am. 142 EL224Google Scholar
[14] Wang X, Gong X, Qin C, Zhang D, Wu H, Zhang D 2019 Mech. Syst. Sig. Process. 130 790Google Scholar
[15] Xu L, Wang K, Su Y, He Y, Yang J, Yuan S, Su Z 2021 Ultrasonics 118 106578
[16] Zabolotskaya E A 1992 J. Acoust. Soc. Am. 91 2569Google Scholar
[17] Herrmann J, Kim J, Jacobs L J, Qu J, Littles J W, Savage M F 2006 J. Appl. Phys. 99 124913Google Scholar
[18] Masurkar F, Tse P 2020 Ultrasonics 108 106036Google Scholar
[19] Landau L D, Lifshitz E M 1986 Theory of Elasticity (Oxford: Pergamon Press) pp95–118
[20] Rose J L 2014 Ultrasonic Guided Waves in Solid Media (New York: Cambridge University Press) pp108–114
[21] Kundu T 2019 Nonlinear Ultrasonic and Vibro-acoustical Techniques for Nondestructive Evaluation (Gewerbestrasse: Springer Press) pp229–231
[22] Jia L, Yan S, Zhang B, Huang J 2020 J. Acoust. Soc. Am. 148 EL289Google Scholar
[23] Norris A 1991 J. Elasticity 25 247Google Scholar
[24] Nagy P B, Qu J, Jacobs L J 2013 J. Acoust. Soc. Am. 134 1760Google Scholar
[25] Morlock M B, Kim J, Jacobs L J, Qu J 2015 J. Acoust. Soc. Am. 137 281Google Scholar
[26] Muir D D. 2009 Ph. D. Dissertation (Atlanta: Georgia Institute of Technology)
[27] Zhong B, Zhu J 2021 Appl. Phys. Lett. 118 261903Google Scholar
[28] Stobbe D M 2005 M. S. Thesis (Atlanta: Georgia Institute of Technology)
[29] de Araújo Freitas V L, de Albuquerque V H C, de Macedo Silva E, Silva A A, Tavares J M R 2010 Mater. Sci. Eng. A 527 4431Google Scholar
[30] Shui Y, Solodov I Y 1988 J. Appl. Phys. 64 6155Google Scholar
[31] Shull D J, Kim E E, Hamilton M F, Zabolotskaya E A 1995 J. Acoust. Soc. Am. 97 2126Google Scholar
-
图 4 纵波仿真结果图 (a)传播距离15 mm处探针的信号图; (b) 基波和二次谐波幅值随距离变化图, 蓝色点是仿真结果, 黄色实线是线性拟合结果
Fig. 4. Simulation results for the nonlinear longitudinal wave: (a) Typical signal at 15 mm propagation distance; (b) plots of fundamental wave and second harmonic amplitude versus propagation distance, where blue points denote the simulation results, and the yellow solid line denotes the fitting line.
图 5 表面波仿真结果 (a) 传播距离15 mm处探针的信号图; (b) 基波和二次谐波幅值随距离变化图, 蓝色点是仿真结果, 黄色实线是拟合结果
Fig. 5. Simulation results for the nonlinear surface wave: (a) Typical signal at 15 mm propagation distance; (b) plots of fundamental wave and second harmonic amplitude versus propagation distance, where blue points denote the simulation results, and the yellow solid line denotes the fitting line.
表 1 纯铝和三种铝合金的密度和弹性常数
Table 1. Densities and elastic coefficients of pure aluminum and three aluminum alloys.
表 2 初始条件和传播距离对面外分量和纵波二次谐波幅值的影响
Table 2. The effects of initial conditions and propagation distance on the amplitudes of out-of-plane component and the second harmonic longitudinal wave.
序号 传播距离r/m 频率f/MHz 基波幅值${A_1}$/nm 二次谐波幅值 ${A_2}$/nm $A_2^{\text{C}}$/nm $u_{\text{l}}^{\left( 2 \right)}$/nm 1 0.2 1 1 2.91×10–3 3.05×10–5 3.80×10–4 2 0.2 0.2 1 1.16×10–4 6.11×10–6 1.52×10–5 3 0.2 1 5 7.28×10–2 7.62×10–4 9.48×10–3 4 0.5 1 1 2.91×10–2 1.22×10–4 3.80×10–3 材料 ${\beta _{\text{l}}}$ ${\beta _{\text{r}}}$ ${\bar \beta _{\text{r}}}$ $ {\bar \beta _{11}} $ ${\delta _{\text{R}}}$ Al 14.670 24.672 4.740 1.166 22.191 Al2024 9.680 15.799 3.044 0.674 13.892 Al6061 9.695 14.753 2.860 0.733 14.444 Al7075 13.723 22.271 4.293 1.024 21.227 -
[1] 周正干, 刘斯明 2011 机械工程学报 47 2
Zhou Z G, Liu S M 2011 J. Mech. Eng. 47 2
[2] Huang Y, Wang X, Gong X, Wu H, Zhang D, Zhang D 2020 Sci. Rep. 10 1
[3] Matlack K H, Kim J Y, Jacobs L J, Qu J 2015 J. Nondestr. Eval. 34 273Google Scholar
[4] 陈海霞, 林书玉 2021 物理学报 70 114302Google Scholar
Chen H X, Lin S Y 2021 Acta Phys. Sin. 70 114302Google Scholar
[5] Zhang S, Li X, Chen C, Jeong H, Xu G 2019 J. Nondestr. Eval. 38 88Google Scholar
[6] Liu Y, He A, Liu J, Mao Y, Liu X 2020 Chin. Phys. B 29 054301Google Scholar
[7] Li W, Lan Z, Hu N, Deng M 2021 Ultrasonics 113 106356Google Scholar
[8] Zhang J, Xuan F Z, Yang F 2013 J. NonCryst. Solids 378 101Google Scholar
[9] Guo S, Lei Z, Mirshekarloo M S, Chen S, Yi F C, Zheng Z W, Shen Z, Liu H, Yao K 2016 Mater. Sci. Eng. A 669 41Google Scholar
[10] Kim G, Park S, Kim J Y, Kurtis K E, Hayes N W, Jacobs L J 2018 Constr. Build. Mater. 186 1114Google Scholar
[11] Torello D, Selby N, Kim J Y, Qu J, Jacobs L 2017 Ultrasonics 81 107Google Scholar
[12] 张世功, 吴先梅, 张碧星, 安志武 2016 物理学报 65 104301Google Scholar
Zhang S G, Wu X M, Zhang B X, An Z W 2016 Acta Phys. Sin. 65 104301Google Scholar
[13] Kube C M, Argulles A P 2017 J. Acoust. Soc. Am. 142 EL224Google Scholar
[14] Wang X, Gong X, Qin C, Zhang D, Wu H, Zhang D 2019 Mech. Syst. Sig. Process. 130 790Google Scholar
[15] Xu L, Wang K, Su Y, He Y, Yang J, Yuan S, Su Z 2021 Ultrasonics 118 106578
[16] Zabolotskaya E A 1992 J. Acoust. Soc. Am. 91 2569Google Scholar
[17] Herrmann J, Kim J, Jacobs L J, Qu J, Littles J W, Savage M F 2006 J. Appl. Phys. 99 124913Google Scholar
[18] Masurkar F, Tse P 2020 Ultrasonics 108 106036Google Scholar
[19] Landau L D, Lifshitz E M 1986 Theory of Elasticity (Oxford: Pergamon Press) pp95–118
[20] Rose J L 2014 Ultrasonic Guided Waves in Solid Media (New York: Cambridge University Press) pp108–114
[21] Kundu T 2019 Nonlinear Ultrasonic and Vibro-acoustical Techniques for Nondestructive Evaluation (Gewerbestrasse: Springer Press) pp229–231
[22] Jia L, Yan S, Zhang B, Huang J 2020 J. Acoust. Soc. Am. 148 EL289Google Scholar
[23] Norris A 1991 J. Elasticity 25 247Google Scholar
[24] Nagy P B, Qu J, Jacobs L J 2013 J. Acoust. Soc. Am. 134 1760Google Scholar
[25] Morlock M B, Kim J, Jacobs L J, Qu J 2015 J. Acoust. Soc. Am. 137 281Google Scholar
[26] Muir D D. 2009 Ph. D. Dissertation (Atlanta: Georgia Institute of Technology)
[27] Zhong B, Zhu J 2021 Appl. Phys. Lett. 118 261903Google Scholar
[28] Stobbe D M 2005 M. S. Thesis (Atlanta: Georgia Institute of Technology)
[29] de Araújo Freitas V L, de Albuquerque V H C, de Macedo Silva E, Silva A A, Tavares J M R 2010 Mater. Sci. Eng. A 527 4431Google Scholar
[30] Shui Y, Solodov I Y 1988 J. Appl. Phys. 64 6155Google Scholar
[31] Shull D J, Kim E E, Hamilton M F, Zabolotskaya E A 1995 J. Acoust. Soc. Am. 97 2126Google Scholar
计量
- 文章访问数: 4918
- PDF下载量: 82
- 被引次数: 0