-
本文研究了Fe-C合金中碳元素陷阱对基体缺陷的影响,以及在辐照条件下Fe-C合金中基体缺陷的演化. 通过将陷阱复合体参数化后进行实例动态蒙特卡罗(OKMC)建模,从而建立微观计算模拟数据与宏观实验数据之间映射的桥梁. 模拟结果验证了碳(C)-空位(Vac)复合体在理想条件下的演化,在较低温度下,复合体主要为C-Vac2. 基于复合体陷阱的假设,对Fe-C系统中基体缺陷在辐照条件下的演化进行了模拟. 验证了碳空位复合体对基体缺陷有明显的捕获作用. 模拟Fe-C系统中基体缺陷在辐照条件下的演化能够得到与实验一致的结果,对比讨论了模拟中使用的有效近似参数对模拟结果的影响,为铁基合金辐照缺陷演化的研究提供了基础支撑.The effects of carbon traps in Fe-C alloys on matrix defects and the evolutions of matrix defects in Fe-C alloys under irradiation are investigated in this paper. The object kinetic Monte Carlo (OKMC) modeling is used to establish a bridge between the micro-computational simulation data and the macro-experimental data. The simulation results verify the evolution of the carbon (C)-vacancy (Vac) complex under ideal conditions, and at relatively low temperatures, the complex is mainly C-Vac2. Under the assumption of complex traps, the evolution of matrix defects in Fe-C systems under irradiation is simulated in this work. It is verified that the carbon vacancy complex has an obvious trapping effect on matrix defects, and the simulation results of evolution simulation of matrix defects in the Fe-C system under irradiation are consistent with the experimental results. Furthermore, the effective approximate parameters used in the simulation are compared and discussed. The present research can provide a basic support for the research on the evolution of iron-based alloy irradiation defects.
-
Keywords:
- OKMC /
- evolution of irradiation defects /
- matrix defects /
- iron-base steel
[1] Smallman R E, Westmacott K H 1959 J. Appl. Phys. 30 603Google Scholar
[2] Slugeň V, Kryukov A 2013 Nucl. Eng. Des. 263 308
[3] Muroga T, Sekimura N 1998 Fusion Eng. Des. 41 39Google Scholar
[4] Styman P D, Hyde J M, Wilford K, et al. 2015 Ultramicroscopy 159 292Google Scholar
[5] Lin X, Peng Q, Han E H, et al. 2018 Scr. Mater. 149 11Google Scholar
[6] George H, Vineyard 1957 J. Phys. Chem. Solids 3 121Google Scholar
[7] Martin-Bragado I, Rivera A, Valles G, et al. 2013 Comput. Phys. Commun. 184 2703Google Scholar
[8] Jansson V, Chiapetto M, Malerba L 2013 J. Nucl. Mater. 442 341Google Scholar
[9] Becquart C S, Domain C 2003 Nucl. Instrum. Methods Phys. Res. 202 44Google Scholar
[10] Fu C C, Torre J, Willaime F, et al. 2005 Nat. Mater. 4 68Google Scholar
[11] Malerba L, Marinica M C, Anento N, et al. 2010 J. Nucl. Mater. 406 19Google Scholar
[12] Mendelev M I, Han S, Srolovitz D, et al. 2003 Philos. Mag. 83 3977Google Scholar
[13] Pascuet M I, Castin N, Becquart C S, et al. 2011 J. Nucl. Mater. 42 106Google Scholar
[14] Nichols F A 1969 J. Nucl. Mater. 30 143Google Scholar
[15] Domain C, Becquart C S, Malerba L 2004 J. Nucl. Mater. 335 121Google Scholar
[16] Castin N, Pascuet MI, Malerba L 2012 J. Nucl. Mater. 429 315Google Scholar
[17] Anento N, Serra A, Osetsky, et al. 2010 Modell Simul. Mater. Sci. Eng. 18 025008Google Scholar
[18] Terentyev D, Klaver T, Olsson P, et al. 2008 Phys. Rev. Lett. 100 145503Google Scholar
[19] Takaki S, Fuss J, Kuglers H, et al. 1983 Radiat. Eff. Defects Solids 79 87Google Scholar
[20] Arakawa K, Ono K, Isshiki M, et al. 2007 Science 318 956Google Scholar
[21] Barashev A, Golubov S H 2001 Philos. Mag. 81 2515Google Scholar
[22] Wirth B D, Odette G R, Maroudas D, et al. 2000 J. Nucl. Mater. 276 33Google Scholar
[23] Domain C, Becquart C S, Malerba L 2004 Journal of Nucl. Mater. 335 121
[24] Forst J C, Slycke J, Vliet K J V, et al. 2006 Phys. Rev. Lett. 96 175501Google Scholar
[25] Anento N, Serra A 2013 J. Nucl. Mater. 440 236Google Scholar
[26] Hepburn D, Ackland G 2008 Phys. Rev. B 78 165115Google Scholar
[27] Zinkle S J, Singh B N 2006 J. Nucl. Mater. 351 269Google Scholar
-
-
[1] Smallman R E, Westmacott K H 1959 J. Appl. Phys. 30 603Google Scholar
[2] Slugeň V, Kryukov A 2013 Nucl. Eng. Des. 263 308
[3] Muroga T, Sekimura N 1998 Fusion Eng. Des. 41 39Google Scholar
[4] Styman P D, Hyde J M, Wilford K, et al. 2015 Ultramicroscopy 159 292Google Scholar
[5] Lin X, Peng Q, Han E H, et al. 2018 Scr. Mater. 149 11Google Scholar
[6] George H, Vineyard 1957 J. Phys. Chem. Solids 3 121Google Scholar
[7] Martin-Bragado I, Rivera A, Valles G, et al. 2013 Comput. Phys. Commun. 184 2703Google Scholar
[8] Jansson V, Chiapetto M, Malerba L 2013 J. Nucl. Mater. 442 341Google Scholar
[9] Becquart C S, Domain C 2003 Nucl. Instrum. Methods Phys. Res. 202 44Google Scholar
[10] Fu C C, Torre J, Willaime F, et al. 2005 Nat. Mater. 4 68Google Scholar
[11] Malerba L, Marinica M C, Anento N, et al. 2010 J. Nucl. Mater. 406 19Google Scholar
[12] Mendelev M I, Han S, Srolovitz D, et al. 2003 Philos. Mag. 83 3977Google Scholar
[13] Pascuet M I, Castin N, Becquart C S, et al. 2011 J. Nucl. Mater. 42 106Google Scholar
[14] Nichols F A 1969 J. Nucl. Mater. 30 143Google Scholar
[15] Domain C, Becquart C S, Malerba L 2004 J. Nucl. Mater. 335 121Google Scholar
[16] Castin N, Pascuet MI, Malerba L 2012 J. Nucl. Mater. 429 315Google Scholar
[17] Anento N, Serra A, Osetsky, et al. 2010 Modell Simul. Mater. Sci. Eng. 18 025008Google Scholar
[18] Terentyev D, Klaver T, Olsson P, et al. 2008 Phys. Rev. Lett. 100 145503Google Scholar
[19] Takaki S, Fuss J, Kuglers H, et al. 1983 Radiat. Eff. Defects Solids 79 87Google Scholar
[20] Arakawa K, Ono K, Isshiki M, et al. 2007 Science 318 956Google Scholar
[21] Barashev A, Golubov S H 2001 Philos. Mag. 81 2515Google Scholar
[22] Wirth B D, Odette G R, Maroudas D, et al. 2000 J. Nucl. Mater. 276 33Google Scholar
[23] Domain C, Becquart C S, Malerba L 2004 Journal of Nucl. Mater. 335 121
[24] Forst J C, Slycke J, Vliet K J V, et al. 2006 Phys. Rev. Lett. 96 175501Google Scholar
[25] Anento N, Serra A 2013 J. Nucl. Mater. 440 236Google Scholar
[26] Hepburn D, Ackland G 2008 Phys. Rev. B 78 165115Google Scholar
[27] Zinkle S J, Singh B N 2006 J. Nucl. Mater. 351 269Google Scholar
计量
- 文章访问数: 3799
- PDF下载量: 74
- 被引次数: 0