-
量子自旋霍尔效应通常存在于二维拓扑绝缘体中, 其具有受拓扑保护的无耗散螺旋边界态. 2014年, 理论预言单层1T' 相过渡金属硫族化合物是一类新型的二维量子自旋霍尔绝缘体. 其中, 以单层1T'-WTe2为代表的材料体系具有原子结构稳定、体带隙显著、拓扑性质易于调控等许多独特的优势, 对低功耗自旋电子器件的发展具有重要的意义. 本文总结了单层1T'-WTe2在实验上的最新进展, 包括基于分子束外延生长的材料制备, 螺旋边界态的探测及其对磁场的响应, 掺杂、应力等手段在单层1T'-WTe2中诱导出的新奇量子物态等. 也对单层1T'-WTe2未来可能的应用前景进行了展望.
-
关键词:
- 单层1T'-WTe2 /
- 拓扑绝缘体 /
- 量子自旋霍尔效应 /
- 螺旋边界态
Quantum spin Hall effect, usually existing in two-dimensional (2D) topological insulators, has topologically protected helical edge states. In the year 2014, there was raised a theoretical prediction that monolayer transition metal dichalcogenides (TMDs) with 1T' phase are expected to be a new class of 2D quantum spin Hall insulators. The monolayer 1T'-WTe2 has attracted much attention, because it has various excellent characteristics such as stable atomic structures, an obvious bandgap opening in the bulk of monolayer 1T'-WTe2, and tunable topological properties, which paves the way for realizing a new generation of spintronic devices. In this review, we mainly summarize the recent experimental progress of the 2D quantum spin Hall insulators in monolayer 1T'-WTe2, including the sample preparation via a molecular beam epitaxy technique, the detection of helical edge states and their response on external magnetic fields, as well as the modulation of more rich and novel quantum states under electron doping or strain. Finally, we also prospect the future applications based on monolayer 1T'-WTe2.-
Keywords:
- monolayer 1T'-WTe2 /
- topological insulator /
- quantum spin Hall effect /
- helical edge state
[1] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar
[2] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar
[3] Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar
[4] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar
[5] Oh S 2013 Science 340 153Google Scholar
[6] Cao C, Chen J H 2019 Adv. Quantum Technol. 2 1900026Google Scholar
[7] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar
[8] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar
[9] Liu C, Hughes T L, Qi X, Wang K, Zhang S 2008 Phys. Rev. Lett. 100 236601Google Scholar
[10] Knez I, Du R R, Sullivan G 2011 Phys. Rev. Lett. 107 136603Google Scholar
[11] Li T, Wang P, Fu H, Du L, Schreiber K A, Mu X, Liu X, Sullivan G, Csáthy G A, Lin X, Du R R 2015 Phys. Rev. Lett. 115 136804Google Scholar
[12] Du L, Knez I, Sullivan G, Du R R 2015 Phys. Rev. Lett. 114 096802Google Scholar
[13] Du L, Li T, Lou W, Wu X, Liu X, Han Z, Zhang C, Sullivan G, Ikhlassi A, Chang K, Du R R 2017 Phys. Rev. Lett. 119 056803Google Scholar
[14] Li T, Wang P, Sullivan G, Lin X, Du R R 2017 Phys. Rev. B 96 241406(RGoogle Scholar
[15] Qian X, Liu J, Fu L, Li J 2014 Science 346 1344Google Scholar
[16] Lü R, Robinson J A, Schaak R E, Sun D, Sun Y, Mallouk T E, Terrones M 2015 Acc. Chem. Res. 48 56Google Scholar
[17] Zheng F, Cai C, Ge S, Zhang X, Liu X, Lu H, Zhang Y, Qiu J, Taniguchi T, Watanabe K, Jia S, Qi J, Chen J H, Sun D, Feng J 2016 Adv. Mater. 28 4845Google Scholar
[18] Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Chang G, Valdivia A M M, Chan C K, Gibson Q D, Zhou J, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, Jarillo-Herrero P 2018 Nat. Phys. 14 900Google Scholar
[19] Xiang H, Xu B, Liu J, Xia Y, Lu H, Yin J, Liu Z 2016 AIP Adv. 6 095005Google Scholar
[20] Hsu Y T, Cole W S, Zhang R X, Sau J D 2020 Phys. Rev. Lett. 125 97001Google Scholar
[21] Yang W, Mo C J, Fu S Bin, Yang Y, Zheng F W, Wang X H, Liu Y A, Hao N, Zhang P 2020 Phys. Rev. Lett. 125 237006Google Scholar
[22] Lüpke F, Waters D, de la Barrera S C, Widom M, Mandrus D G, Yan J, Feenstra R M, Hunt B M 2020 Nat. Phys. 16 526Google Scholar
[23] Lee J H, Son Y W 2021 Phys. Chem. Chem. Phys. 23 17279Google Scholar
[24] Xu Z, Luo B, Chen M, Xie W, Hu Y, Xiao X 2021 Appl. Surf. Sci. 548 148751Google Scholar
[25] Niu K, Weng M, Li S, Guo Z, Wang G, Han M, Pan F, Lin J 2021 Adv. Sci. 8 2101563Google Scholar
[26] Lai S, Liu H, Zhang Z, Zhao J, Feng X, Wang N, Tang C, Liu Y, Novoselov K S, Yang S A, Gao W B 2021 Nat. Nanotechnol. 16 869Google Scholar
[27] Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K, Shen Z X 2017 Nat. Phys. 13 683Google Scholar
[28] Fei Z, Palomaki T, Wu S, Zhao W, Cai X, Sun B, Nguyen P, Finney J, Xu X, Cobden D H 2017 Nat. Phys. 13 677Google Scholar
[29] Peng L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G, Fu Y S 2017 Nat. Commun. 8 659Google Scholar
[30] Jia Z Y, Song Y H, Li X B, Ran K, Lu P, Zheng H J, Zhu X Y, Shi Z Q, Sun J, Wen J, Xing D, Li S C 2017 Phys. Rev. B 96 041108Google Scholar
[31] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76Google Scholar
[32] Shi Y, Kahn J, Niu B, Fei Z, Sun B, Cai X, Francisco B A, Wu D, Shen Z X, Xu X, Cobden D H, Cui Y T 2019 Sci. Adv. 5 eaat8799Google Scholar
[33] Garcia J H, Vila M, Hsu C H, Waintal X, Pereira V M, Roche S 2020 Phys. Rev. Lett. 125 256603Google Scholar
[34] Zhao W, Runburg E, Fei Z, Mutch J, Malinowski P, Sun B, Huang X, Pesin D, Cui Y T, Xu X, Chu J H, Cobden D H 2021 Phys. Rev. X 11 041034Google Scholar
[35] Lodge M S, Yang S A, Mukherjee S, Weber B 2021 Adv. Mater. 33 2008029Google Scholar
[36] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A, Cobden D H 2018 Science 362 922Google Scholar
[37] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 362 926Google Scholar
[38] Zhao C, Hu M, Qin J, Xia B, Liu C, Wang S, Guan D D, Li Y, Zheng H, Liu J, Jia J 2020 Phys. Rev. Lett. 125 46801Google Scholar
[39] Voiry D, Mohite A, Chhowalla M 2015 Chem. Soc. Rev. 44 2702Google Scholar
[40] Xiao Y, Zhou M, Liu J, Xu J, Lei F 2019 Sci. Chin. Mater. 62 759Google Scholar
[41] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V., Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar
[42] Essin A M, Gurarie V 2011 Phys. Rev. B 84 125132Google Scholar
[43] Choe D H, Sung H J, Chang K J 2016 Phys. Rev. B 93 125109Google Scholar
[44] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar
[45] Yu P, Fu W, Zeng Q, Lin J, Yan C, Lai Z, Tang B, Suenaga K, Zhang H, Liu Z 2017 Adv. Mater. 29 1701909Google Scholar
[46] Lu W, Zhang Y, Zhu Z, Lai J, Zhao C, Liu X, Liu J, Sun D 2016 Nanotechnology 27 414006Google Scholar
[47] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[48] Desai S B, Madhvapathy S R, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y, Dubey M, Ager J W, Chrzan D, Javey A 2016 Adv. Mater. 28 4053Google Scholar
[49] Velický M, Donnelly G E, Hendren W R, McFarland S, Scullion D, DeBenedetti W J I, Correa G C, Han Y, Wain A J, Hines M A, Muller D A, Novoselov K S, Abruńa H D, Bowman R M, Santos E J G, Huang F 2018 ACS Nano 12 10463Google Scholar
[50] Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar
[51] Gao M, Zhang M, Niu W, Chen Y, Gu M, Wang H, Song F, Wang P, Yan S, Wang F, Wang X, Wang X, Xu Y, Zhang R 2017 Appl. Phys. Lett. 111 031906Google Scholar
[52] Chen Y, Chen Y, Ning J, Chen L, Zhuang W, He L, Zhang R, Xu Y, Wang X 2020 Chin. Phys. Lett. 37 017104Google Scholar
[53] Chen Y, Liu R, Chen Y, Yuan X, Ning J, Zhang C, Chen L, Wang P, He L, Zhang R, Xu Y, Wang X 2021 Chin. Phys. Lett. 38 017101Google Scholar
[54] Song Y H, Jia Z Y, Zhang D, Zhu X Y, Shi Z Q, Wang H, Zhu L, Yuan Q Q, Zhang H, Xing D Y, Li S C 2018 Nat. Commun. 9 4071Google Scholar
[55] Cucchi I, Gutiérrez-Lezama I, Cappelli E, Walker S M K, Bruno F Y, Tenasini G, Wang L, Ubrig N, Barreteau C, Giannini E, Gibertini M, Tamai A, Morpurgo A F, Baumberger F 2019 Nano Lett. 19 554Google Scholar
[56] Lai K, Ji M B, Leindecker N, Kelly M A, Shen Z X 2007 Rev. Sci. Instrum. 78 063702Google Scholar
[57] Ma E Y, Calvo M R, Wang J, Lian B, Mühlbauer M, Brüne C, Cui Y T, Lai K, Kundhikanjana W, Yang Y, Baenninger M, König M, Ames C, Buhmann H, Leubner P, Molenkamp L W, Zhang S C, Goldhaber-Gordon D, Kelly M A, Shen Z X 2015 Nat. Commun. 6 7252Google Scholar
[58] Cui Y T, Ma E Y, Shen Z X 2016 Rev. Sci. Instrum. 87 063711Google Scholar
[59] Cui Y T, Wen B, Ma E Y, Diankov G, Han Z, Amet F, Taniguchi T, Watanabe K, Goldhaber-Gordon D, Dean C R, Shen Z X 2016 Phys. Rev. Lett. 117 186601Google Scholar
-
图 4 单层1T'-TMD的能带结构 (a) 能带从拓扑平庸相转变为拓扑非平庸相的示意图. 能带的反转导致其从拓扑平庸相转变为拓扑非平庸相, 自旋-轨道耦合效应可以进一步使轨道交叠处的简并度解除[35]. (b)单层1T'-TMD的能带结构[15]
Fig. 4. Band structures of monolayer 1T'-TMD: (a) Schematic of band evolution from a topologically trivial phase to a nontrivial phase. Band inversion causes the band changing from topologically trivial to topologically nontrivial[35]; (b) band structure of monolayer 1T'-TMD[15].
图 5 单层1T'-WTe2的制备与表征 (a)利用MBE技术生长单层1T'-WTe2的示意图[30]; (b)在石墨烯表面生长单层1T'-WTe2后的RHEED图[30], 其中蓝色箭头表示来自BLG/SiC(0001)基底的条纹, 而红色箭头表示来自单层1T'-WTe2的3个等能畴方向的条纹[30]; (c) 单层1T'-WTe2的原子分辨STM图[54]; (d) 单层1T'-WTe2的布里渊区图[54]
Fig. 5. Preparation and characterization of the monolayer 1T'-WTe2: (a) Schematic of sample preparation of monolayer 1T'-WTe2 via an MBE method[30]. (b) RHEED pattern of monolayer 1T'-WTe2[30]. The blue arrow marks the streaks from the BLG/SiC(0001) substrate, while the red arrows represent the ones from WTe2 domains of three equivalent orientations[30]. (c) Atomic-resolution STM image of monolayer 1T'-WTe2[54]. (d) Brillouin zone of monolayer 1T'-WTe2[54].
图 6 单层1T'-WTe2的体能带结构 (a) 利用ARPES探测单层1T'-WTe2沿着Γ-X方向的体能带结构[55]; (b) 利用第一性原理计算单层1T'-WTe2的能带结构[55]
Fig. 6. Band structure of monolayer 1T'-WTe2: (a) Band structure of monolayer 1T'-WTe2 acquired by ARPES along the Γ-X direction[55]; (b) calculated band structure of monolayer 1T'-WTe2 along the Γ-X direction by first-principles[55]
图 7 利用STM探测1T'-WTe2单层台阶处的一维边界态[29] (a) 1T'-WTe2单层台阶的STM图; (b) 1T'-WTe2内部(黑线)和单层台阶边缘处(红线)的STS谱; (c)空间分辨的STS谱, 横坐标表示探测点到1T'-WTe2单层台阶的距离, x = 0 nm为1T'-WTe2的单层台阶
Fig. 7. STM detection of edge states in 1T'-WTe2 monolayer step: (a) STM image of 1T'-WTe2 monolayer step[29]; (b) typical STS spectra recorded at the step edge (red curve) and at a location at the inner terrace (black curve) of 1T'-WTe2[29]; (c) spatial-resolved STS spectra recorded perpendicular to the 1T'-WTe2 monolayer step. The position x = 0 nm is at the monolayer step[29].
图 8 利用MIM探测单层1T'-WTe2的边界态[32] (a)样品的光学显微镜图, 单层1T'-WTe2被转移到SiO2/Si衬底上, 并覆盖10 nm厚的hBN; (b)—(d) 图(a)中不同区域对应的零磁场下MIM-Im图; (e)穿过单层1T'-WTe2边界的零磁场下MIM-Im信号随栅极电压的变化情况, 其中EGate = –15 V为电中性点的位置; (f)穿过单层1T'-WTe2边界的B = 9 T下MIM-Im信号随栅极电压的变化情况
Fig. 8. Detection of edge states in monolayer 1T'-WTe2 via an MIM technique: (a) Optical image of monolayer 1T'-WTe2 exfoliated onto SiO2/Si substrate and covered with a 10-nm-thick hBN[32]. (b)–(d) MIM-Im images of the regions marked in panel (a) [32]. (e) MIM-Im images obtained across the edge of monolayer 1T'-WTe2 as a function of gate voltage EGate under B = 0 T[32]. The charge neutral point is located at EGate = –15 V[32]. (f) MIM-Im images obtained across the edge of monolayer 1T'-WTe2 as a function of gate voltage EGate under B = 9 T[32].
图 9 利用电荷输运测量单层1T'-WTe2的量子自旋霍尔效应[31] (a)基于单层1T'-WTe2器件的示意图. 器件由单层1T'-WTe2、用于封装的hBN、石墨顶栅、8个接触电极, 以及长度不一的一系列局域背栅组成. (b)电阻差值ΔR随局域栅极电压Vc的变化曲线, 其中局域背栅的宽度分别为100, 70 和60 nm. (c)长度依赖的电阻. 在短通道极限下, ΔRs接近于电阻最小值h/(2e2), 这意味着每个边界的电导为e2/h, 满足量子自旋霍尔效应. (d)在垂直磁场下, 边界电导GS随Vc的变化曲线, 背栅宽度为100 nm. (e)在特定的Vc下, GS随磁场的变化曲线. 电导是否出现饱和取决于费米面的位置. (f) –ln(GS/G0)随μBB/(kBT)的变化. 黑线为线性拟合的结果. 插图: 对于电导不饱和的情况, 在不同温度下测量GS随磁场的变化; (g)边界电导随温度的变化情况. 插图: 不同温度下ΔR随Vc的变化曲线[31]
Fig. 9. Observation of quantum spin Hall effect up to 100 K in monolayer 1T'-WTe2 via transport measurements[31]: (a) Schematic of monolayer 1T'-WTe2 encapsulated with hBN. Graphite is applied for the top gate, eight contact electrodes are applied to minimize the effect of contact resistance, and a series of in-channel local bottom gates are applied to study the length-dependent feature. (b) ΔR versus Vc for the gate with the width of 60, 70, and 100 nm. (c) Length dependence of ΔRs. In the short-channel limit, the ΔRs values approach a minimum of h/(2e2), in agreement with quantum spin Hall effect. (d) GS versus Vc under perpendicular magnetic fields for a 100-nm-width gate. (e) GS versus B at specific Vc. The saturation or not of GS depends on the Fermi energy. (f) –ln(GS/G0) versus μBB/(kBT). The black line is a linear fit. Inset: Temperature dependence of GS versus B for the non-saturating curves. (g) Temperature dependence of the edge conductance. Inset: gate dependence of ΔR at various temperatures.
图 10 利用STS探测单层1T'-WTe2中体绝缘态的物理起源[54] (a)在单层1T'-WTe2体内不同位置的低能STS谱, 红色箭头表示库仑能隙, 蓝色箭头表示局域态密度降低的能量位置; (b)不同能量STS图的傅里叶变换结果; (c)沿着动量Y-Γ-Y方向的能带结构示意图, 其中q1为导带的带内散射, q2为两个导带间的带间散射, q3为导带和价带间的带间散射, q4为价带的带内散射; (d)通过不同能量STS图的傅里叶变换得到的单层1T'-WTe2能量-动量色散关系, 其中黑线为q1, q2, q3带色散; (e)不同浓度K掺杂单层1T'-WTe2得到的STS谱, 费米面处存在库仑能隙
Fig. 10. STS evidence of the physical origin of the bulk insulator in monolayer 1T'-WTe2[54]: (a) Spatially resolved low-energy STS spectra recorded in the bulk of monolayer 1T'-WTe2. The Coulomb gap and the minimum of local density of states are marked by the red and blue arrows, respectively. (b) The fast Fourier transform (FFT) image of the STS maps at different energies. (c) Band structures of monolayer 1T'-WTe2 along the direction of Y-Γ-Y in the reciprocal space. The corresponding scattering channels of are the intra-band scattering of the conduction band (q1), the inter-conduction band scattering (q2), the inter-band scattering between the valence and conduction bands (q3), and the intra-band scattering of the valence band (q4). (d) Energy-momentum dispersion along the Y-Γ-Y direction. The black lines schematically illustrate the band dispersion of q2, q3, and q4. (e) STS spectra taken on the 1T'-WTe2 surface with different potassium coverage. The Coulomb gap is located at the Fermi energy.
图 11 在单层1T'-WTe2中实现二维拓扑绝缘体-超导相变[36] (a) 基于单层1T'-WTe2器件的光学显微镜图及模型图, 其中单层1T'-WTe2用hBN介电层封装, 并通过石墨引入电极; (b)在不同温度下, Rxx随电子掺杂浓度ne的变化关系; (c)在单层1T'-WTe2中发生二维拓扑绝缘体-超导转变的相图; (d)在不同ne下, Rxx随温度的变化曲线; (e)在高ne时, Rxx随垂直磁场强度的变化关系, 其中插图为T1/2随温度的变化以及B1/2随垂直磁场的变化; (f)在高ne时, Rxx随平行磁场强度的变化关系, 其中插图为T1/2随平行磁场的变化, 虚线为g因子为2时的泡利极限值BP; (g)在不同温度和垂直磁场下, 电导随掺杂浓度的变化曲线, 其中示意图为不同位置单层1T'-WTe2体和边界的到点情况, 其中体态的颜色与相图一致, 边界态用红色表示
Fig. 11. Realization of phase transition between two-dimensional topological insulating states and superconductivity in monolayer 1T'-WTe2 [36]: (a) Optical image and schematic device structure of monolayer 1T'-WTe2 with encapsulated hBN dielectric layers and two graphite gates. (b) Rxx as a function of electrostatic doping ne under different temperatures. (c) experimental phase diagram of phase transition between two-dimensional topological insulating states and superconductivity in monolayer 1T'-WTe2. (d) Rxx as a function of temperature under different ne. (e) Rxx as a function of perpendicular magnetic field at the highest ne value. Inset: T1/2 as a function of temperature, as well as B1/2 as a function of perpendicular magnetic field. (f) Rxx as a function of parallel magnetic field at the highest ne value. Inset: T1/2 as a function of parallel magnetic field. The Pauli limit BP, assuming g factor of 2, is indicated by the dashed line. (g) Conductance as a function of ne under different temperatures and perpendicular magnetic field. Schematics indicate the state of edge and bulk conduction of monolayer 1T'-WTe2 at different points. The bulk is colored to match the phase diagram, and red indicates a conducting edge state.
图 12 利用应力在单层1T'-WTe2中实现绝缘体-半金属相变[38] (a)—(c)在应力作用下, 单层1T'-WTe2的原子分辨STM图及其STS谱; (d), (e)单层1T'-WTe2的体带隙随其晶格常数a和b的变化; (f)单层1T'-WTe2随晶格常数a和b变化的相图, 其中实验上测得的结果用黑色圆圈标注; (g)理论计算单层1T'-WTe2的A边界能带结构, 计算的晶格常数a = 6.33 Å, b = 3.54 Å; (h)垂直于A边界的空间分辨STS谱, 可以看到明显的一维边界态
Fig. 12. Strain tunable phase transition between topological insulator and semimetal insulator in monolayer 1T'-WTe2[38]: (a)− (c) Atomically resolved STM images and corresponding STS spectra in monolayer 1T'-WTe2 under strain. (d), (e) Energy gap as a function of strains along the a or b directions in monolayer 1T'-WTe2. (f) Phase diagram of monolayer 1T'-WTe2 as a function of lattice constants a and b. Strain conditions acquired from the experimental data are marked by black circles. (g) Calculated edge states along the A edge with the lattice constants a = 6.33 Å, b = 3.54 Å. (h) Spatially resolved STS spectra recorded across the A edge. One-dimensional edge states can be clearly identified.
-
[1] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar
[2] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar
[3] Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar
[4] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar
[5] Oh S 2013 Science 340 153Google Scholar
[6] Cao C, Chen J H 2019 Adv. Quantum Technol. 2 1900026Google Scholar
[7] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar
[8] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar
[9] Liu C, Hughes T L, Qi X, Wang K, Zhang S 2008 Phys. Rev. Lett. 100 236601Google Scholar
[10] Knez I, Du R R, Sullivan G 2011 Phys. Rev. Lett. 107 136603Google Scholar
[11] Li T, Wang P, Fu H, Du L, Schreiber K A, Mu X, Liu X, Sullivan G, Csáthy G A, Lin X, Du R R 2015 Phys. Rev. Lett. 115 136804Google Scholar
[12] Du L, Knez I, Sullivan G, Du R R 2015 Phys. Rev. Lett. 114 096802Google Scholar
[13] Du L, Li T, Lou W, Wu X, Liu X, Han Z, Zhang C, Sullivan G, Ikhlassi A, Chang K, Du R R 2017 Phys. Rev. Lett. 119 056803Google Scholar
[14] Li T, Wang P, Sullivan G, Lin X, Du R R 2017 Phys. Rev. B 96 241406(RGoogle Scholar
[15] Qian X, Liu J, Fu L, Li J 2014 Science 346 1344Google Scholar
[16] Lü R, Robinson J A, Schaak R E, Sun D, Sun Y, Mallouk T E, Terrones M 2015 Acc. Chem. Res. 48 56Google Scholar
[17] Zheng F, Cai C, Ge S, Zhang X, Liu X, Lu H, Zhang Y, Qiu J, Taniguchi T, Watanabe K, Jia S, Qi J, Chen J H, Sun D, Feng J 2016 Adv. Mater. 28 4845Google Scholar
[18] Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Chang G, Valdivia A M M, Chan C K, Gibson Q D, Zhou J, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, Jarillo-Herrero P 2018 Nat. Phys. 14 900Google Scholar
[19] Xiang H, Xu B, Liu J, Xia Y, Lu H, Yin J, Liu Z 2016 AIP Adv. 6 095005Google Scholar
[20] Hsu Y T, Cole W S, Zhang R X, Sau J D 2020 Phys. Rev. Lett. 125 97001Google Scholar
[21] Yang W, Mo C J, Fu S Bin, Yang Y, Zheng F W, Wang X H, Liu Y A, Hao N, Zhang P 2020 Phys. Rev. Lett. 125 237006Google Scholar
[22] Lüpke F, Waters D, de la Barrera S C, Widom M, Mandrus D G, Yan J, Feenstra R M, Hunt B M 2020 Nat. Phys. 16 526Google Scholar
[23] Lee J H, Son Y W 2021 Phys. Chem. Chem. Phys. 23 17279Google Scholar
[24] Xu Z, Luo B, Chen M, Xie W, Hu Y, Xiao X 2021 Appl. Surf. Sci. 548 148751Google Scholar
[25] Niu K, Weng M, Li S, Guo Z, Wang G, Han M, Pan F, Lin J 2021 Adv. Sci. 8 2101563Google Scholar
[26] Lai S, Liu H, Zhang Z, Zhao J, Feng X, Wang N, Tang C, Liu Y, Novoselov K S, Yang S A, Gao W B 2021 Nat. Nanotechnol. 16 869Google Scholar
[27] Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K, Shen Z X 2017 Nat. Phys. 13 683Google Scholar
[28] Fei Z, Palomaki T, Wu S, Zhao W, Cai X, Sun B, Nguyen P, Finney J, Xu X, Cobden D H 2017 Nat. Phys. 13 677Google Scholar
[29] Peng L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G, Fu Y S 2017 Nat. Commun. 8 659Google Scholar
[30] Jia Z Y, Song Y H, Li X B, Ran K, Lu P, Zheng H J, Zhu X Y, Shi Z Q, Sun J, Wen J, Xing D, Li S C 2017 Phys. Rev. B 96 041108Google Scholar
[31] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76Google Scholar
[32] Shi Y, Kahn J, Niu B, Fei Z, Sun B, Cai X, Francisco B A, Wu D, Shen Z X, Xu X, Cobden D H, Cui Y T 2019 Sci. Adv. 5 eaat8799Google Scholar
[33] Garcia J H, Vila M, Hsu C H, Waintal X, Pereira V M, Roche S 2020 Phys. Rev. Lett. 125 256603Google Scholar
[34] Zhao W, Runburg E, Fei Z, Mutch J, Malinowski P, Sun B, Huang X, Pesin D, Cui Y T, Xu X, Chu J H, Cobden D H 2021 Phys. Rev. X 11 041034Google Scholar
[35] Lodge M S, Yang S A, Mukherjee S, Weber B 2021 Adv. Mater. 33 2008029Google Scholar
[36] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A, Cobden D H 2018 Science 362 922Google Scholar
[37] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 362 926Google Scholar
[38] Zhao C, Hu M, Qin J, Xia B, Liu C, Wang S, Guan D D, Li Y, Zheng H, Liu J, Jia J 2020 Phys. Rev. Lett. 125 46801Google Scholar
[39] Voiry D, Mohite A, Chhowalla M 2015 Chem. Soc. Rev. 44 2702Google Scholar
[40] Xiao Y, Zhou M, Liu J, Xu J, Lei F 2019 Sci. Chin. Mater. 62 759Google Scholar
[41] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V., Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar
[42] Essin A M, Gurarie V 2011 Phys. Rev. B 84 125132Google Scholar
[43] Choe D H, Sung H J, Chang K J 2016 Phys. Rev. B 93 125109Google Scholar
[44] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar
[45] Yu P, Fu W, Zeng Q, Lin J, Yan C, Lai Z, Tang B, Suenaga K, Zhang H, Liu Z 2017 Adv. Mater. 29 1701909Google Scholar
[46] Lu W, Zhang Y, Zhu Z, Lai J, Zhao C, Liu X, Liu J, Sun D 2016 Nanotechnology 27 414006Google Scholar
[47] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[48] Desai S B, Madhvapathy S R, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y, Dubey M, Ager J W, Chrzan D, Javey A 2016 Adv. Mater. 28 4053Google Scholar
[49] Velický M, Donnelly G E, Hendren W R, McFarland S, Scullion D, DeBenedetti W J I, Correa G C, Han Y, Wain A J, Hines M A, Muller D A, Novoselov K S, Abruńa H D, Bowman R M, Santos E J G, Huang F 2018 ACS Nano 12 10463Google Scholar
[50] Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar
[51] Gao M, Zhang M, Niu W, Chen Y, Gu M, Wang H, Song F, Wang P, Yan S, Wang F, Wang X, Wang X, Xu Y, Zhang R 2017 Appl. Phys. Lett. 111 031906Google Scholar
[52] Chen Y, Chen Y, Ning J, Chen L, Zhuang W, He L, Zhang R, Xu Y, Wang X 2020 Chin. Phys. Lett. 37 017104Google Scholar
[53] Chen Y, Liu R, Chen Y, Yuan X, Ning J, Zhang C, Chen L, Wang P, He L, Zhang R, Xu Y, Wang X 2021 Chin. Phys. Lett. 38 017101Google Scholar
[54] Song Y H, Jia Z Y, Zhang D, Zhu X Y, Shi Z Q, Wang H, Zhu L, Yuan Q Q, Zhang H, Xing D Y, Li S C 2018 Nat. Commun. 9 4071Google Scholar
[55] Cucchi I, Gutiérrez-Lezama I, Cappelli E, Walker S M K, Bruno F Y, Tenasini G, Wang L, Ubrig N, Barreteau C, Giannini E, Gibertini M, Tamai A, Morpurgo A F, Baumberger F 2019 Nano Lett. 19 554Google Scholar
[56] Lai K, Ji M B, Leindecker N, Kelly M A, Shen Z X 2007 Rev. Sci. Instrum. 78 063702Google Scholar
[57] Ma E Y, Calvo M R, Wang J, Lian B, Mühlbauer M, Brüne C, Cui Y T, Lai K, Kundhikanjana W, Yang Y, Baenninger M, König M, Ames C, Buhmann H, Leubner P, Molenkamp L W, Zhang S C, Goldhaber-Gordon D, Kelly M A, Shen Z X 2015 Nat. Commun. 6 7252Google Scholar
[58] Cui Y T, Ma E Y, Shen Z X 2016 Rev. Sci. Instrum. 87 063711Google Scholar
[59] Cui Y T, Wen B, Ma E Y, Diankov G, Han Z, Amet F, Taniguchi T, Watanabe K, Goldhaber-Gordon D, Dean C R, Shen Z X 2016 Phys. Rev. Lett. 117 186601Google Scholar
计量
- 文章访问数: 11718
- PDF下载量: 658
- 被引次数: 0