搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统

曹若琳 彭清轩 王金东 陈勇杰 黄云飞 於亚飞 魏正军 张智明

引用本文:
Citation:

基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统

曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明

Real-time polarization compensation system for wavelength division multiplexing in low noise fiber channel based on single photon counting feedback

Cao Ruo-Lin, Peng Qing-Xuan, Wang Jin-Dong, Chen Yong-Jie, Huang Yun-Fei, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming
PDF
HTML
导出引用
  • 光纤信道由于受环境影响产生的随机双折射等物理效应使得在其中传输的光信号具有敏感的偏振变化, 严重影响了偏振编码量子密钥分发系统的性能. 本文提出了一种利用单光子计数作为反馈信号的低噪声光纤信道波分复用实时偏振补偿系统, 该系统通过探测共轭参考光的光子计数得到光纤信道偏振变化信息, 设计补偿算法控制电动偏振控制器实时校准对应偏振基下量子信号光的偏振态, 成功实现了稳定的光纤信道偏振补偿. 为验证补偿系统的有效性, 进行了传输距离为25.2 km的基于BB84协议的量子密钥分发测试, 在实验室环境和模拟城域网地埋光纤环境下得到了长达8 h的稳定测试结果, 平均量子比特误码率分别为0.52%和1.25%. 该实验结果表明本系统可在城域网地埋光纤环境下保障偏振编码量子密钥分发的稳定工作.
    The physical effects such as random birefringence of fiber optic channels due to environmental influences make the optical signals transmitted in them have sensitive polarization variations, which seriously affects the performance of polarization biased code quantum key distribution systems. In this paper, a low-noise fiber channel wavelength division multiplexing real-time polarization compensation system is presented, where single photon counting is used as a feedback signal. The system can acquire the fiber channel polarization change information by detecting the photon counting of the conjugate reference light. In the system, the compensation algorithm is designed to control the electric polarization controller to calibrate the polarization state of the quantum signal light under the corresponding polarization base in real time, and the stable fiber channel polarization compensation is successfully achieved. In order to verify the effectiveness of the compensation system, a quantum key distribution test based on BB84 protocol with a transmission distance of 25.2 km is conducted, and stable test results of up to 8 hours are obtained in the laboratory environment and the simulated metropolitan area network buried fiber environment, with the average quantum bit error rate being 0.52% and 1.25%, respectively. The experimental results show that this system can guarantee the stable operation of polarization-encoded quantum key distribution in the buried fiber environment in urban areas.
      通信作者: 王金东, wangjindong@m.scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62071186, 61771205)、广东省自然科学基金(批准号: 2015A030313388)、广东省科技计划(批准号: 2015B010128012)和广东省重点实验室基金(批准号:2020B1212060066)资助的课题
      Corresponding author: Wang Jin-Dong, wangjindong@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071186, 61771205), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313388), the Science and Technology Projects of Guangdong Province, China (Grant No. 2015B010128012), and the Key Laboratory Foundation of Guangdong Province, China (Grant No. 2020B1212060066).
    [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2001 Rev. mod. phys. 74 145

    [2]

    Scarani V, Bechmann P H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [3]

    Bennett C H, Brassard G 1984 IEEE International Conference on Computers New York 198 4

    [4]

    Wang J D, Qin X J, Jiang Y Z, Wang X J, Chen L W, Zhao F, Wei Z J, Zhang Z M 2016 Opt. Express 24 8302Google Scholar

    [5]

    Liu X B, Liao C J, Mi J L, Wang J D, Liu S H 2008 Phys. Lett. A. 373 54Google Scholar

    [6]

    Wang S, Wei C, Yin Z Q, He D Y, Cong H, Hao P L, Guan-Jie F Y, Wang C, Zhang L J, Jie K, Liu S F, Zhou Z, Wang Y G, Guo G C, Han Z F 2018 Opt. Lett. 43 2030Google Scholar

    [7]

    Zhu L, Zhu G X, Wang A D, Wang L L, Ai J Z, Chen S, Du C, Liu J, Yu S Y, Wang J 2018 Opt. Lett. 43 1890Google Scholar

    [8]

    Boucher W, Debuisschert T 2006 Phys. Rev. A 72 1

    [9]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptol. 5 3Google Scholar

    [10]

    Heffner B L 1992 IEEE Photon. Tech. L. 4 1066Google Scholar

    [11]

    Xavier G B, Walenta N, Vilela de Faria G, Temporão G P, Gisin N, Zbinden H, von der Weid J P 2009 New J. Phys. 11 045015Google Scholar

    [12]

    Ding Y Y, Hua C, Wang S, He D Y, Yin Z Q, Wei C, Zhou Z, Guo G C, Han Z F 2017 Opt. Express 25 27923Google Scholar

    [13]

    Chen J, Wu G, Li Y, Wu E, Zeng H P 2007 Opt. Express 15 17928Google Scholar

    [14]

    Chen J, Wu G, Xu L, Gu X, Zeng H P 2009 New J. Phys. 11 065004Google Scholar

    [15]

    Agnesi C, Avesani M, Calderaro L, Stanco A, Foletto G, Zahidy M, Scriminich A, Vedovato F, Vallone G, Villoresi P 2020 Optica 7 284Google Scholar

    [16]

    Xavier G B, Vilela de Faria G, Temporão G P, & von der Weid J P 2008 Opt. Express 16 1867Google Scholar

    [17]

    Li D D, Gao S, Li G C, Lu X, Wang L W, Lu C B, Yao X, Zhao Z Y, Yan L C, Chen Z Y 2018 Opt. Express 26 22793Google Scholar

    [18]

    Ding Y Y, Chen W, Chen H, Wang C, Li Y P, Yin Z Q, Wang S, Guo G C, Han Z F 2017 Opt. Lett. 42 1023Google Scholar

    [19]

    Shi Y C, Thar S M, Poh H S, Grieve J A, Kurtsiefer C, Ling A 2020 Appl. Phys. Lett. 117 4002

    [20]

    Shi Y C, Poh H S, Ling A, Kurtsiefer C 2021 Opt. Express 29 37075Google Scholar

    [21]

    廖延彪 2003 偏振光学 (北京: 科学出版社) 第45页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p45 (in Chinese)

    [22]

    张启业, 朱勇, 苏洋, 周 华, 经继松 2013 光学学报 33 23

    Zhang Q Y, Zhu Y, Su Y, Zhou H, Jing J S 2013 Acta Opt. Sin. 33 23

    [23]

    王剑, 朱勇, 周华, 苏洋, 张志永 2015 光学学报 35 76

    Wang J, Zhu Y, Zhou H, Su Y, Zhang Z Y 2015 Acta Opt. Sin. 35 76

    [24]

    Yan Y, Geng C, Li F, Huang G, Li X Y 2017 IEEE Photon. Technol. Lett. 29 945Google Scholar

    [25]

    周华, 蒲涛, 苏洋, 徐智勇, 沈荟萍, 赵继勇, 王艺敏, 吴传信 2017 2017量子信息技术与应用研讨会论文集 中国北京 2017年6月15—16日 第68页

    Zhou H, Pu T, Su Y, Xu Z Y, Shen H P, Zhao J Y, Wang Y M, Wu C X 2017 2017 Quantum Information Technology and Application Symposium proceedings Beijing China June 15–16, 2017 p68 (in Chinese)

    [26]

    Xi L X, Zhang X G, Tang X F, Weng X A, Tian F 2010 Chin. Opt. Lett. 8 804Google Scholar

  • 图 1  SOP在邦加球上的补偿过程示意图

    Fig. 1.  Compensation process of SOP on Poincaré sphere.

    图 2  低噪声光纤信道WDM实时偏振补偿系统示意图

    Fig. 2.  Schematic diagram of low noise fiber channel WDM real-time polarization compensation system.

    图 3  偏振补偿程序流程图

    Fig. 3.  Flow chart of polarization compensation program.

    图 4  偏振补偿模块未启动时量子信号光$ \left| H \right\rangle $偏振变化引起QBER变化情况 (a) 测试90 min无扰偏器时QBER变化情况; (b) 测试10 min有扰偏器时QBER变化情况

    Fig. 4.  QBER variation of quantum signal caused by polarization drift without compensation: (a) QBER variation in 90 minutes without scrambler; (b) QBER variation in 10 minutes with scrambler.

    图 5  运行补偿程序时量子信号光的4种偏振态QBER的变化 (a) 量子信号光$ \left| H \right\rangle $QBER的变化; (b) 量子信号光$ \left| V \right\rangle $QBER的变化; (c) 量子信号光$ \left| + \right\rangle $QBER的变化; (d) 量子信号光$ \left| - \right\rangle $QBER的变化

    Fig. 5.  QBER variation of quantum signal in four polarization states when running the compensation program: (a) QBER variation of quantum signal in $ \left| H \right\rangle $; (b) QBER variation of quantum signal in $ \left| V \right\rangle $; (c) QBER variation of quantum signal in $ \left| + \right\rangle $; (d) QBER variation of quantum signal in $ \left| - \right\rangle $.

    图 6  启动扰偏器后运行补偿程序时量子信号光的4种偏振态QBER变化 (a) 量子信号光$ \left| H \right\rangle $QBER的变化; (b) 量子信号光$ \left| V \right\rangle $QBER的变化; (c) 量子信号光$ \left| + \right\rangle $QBER的变化; (d) 量子信号光$ \left| - \right\rangle $QBER的变化

    Fig. 6.  QBER variation of the quantum signal in four polarization states after starting the scrambler and running the compensation program: (a) QBER variation of quantum signal in $ \left| H \right\rangle $; (b) QBER variation of quantum signal in $ \left| V \right\rangle $; (c) QBER variation of quantum signal in $ \left| + \right\rangle $; (d) QBER variation of quantum signal in $ \left| - \right\rangle $.

  • [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2001 Rev. mod. phys. 74 145

    [2]

    Scarani V, Bechmann P H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [3]

    Bennett C H, Brassard G 1984 IEEE International Conference on Computers New York 198 4

    [4]

    Wang J D, Qin X J, Jiang Y Z, Wang X J, Chen L W, Zhao F, Wei Z J, Zhang Z M 2016 Opt. Express 24 8302Google Scholar

    [5]

    Liu X B, Liao C J, Mi J L, Wang J D, Liu S H 2008 Phys. Lett. A. 373 54Google Scholar

    [6]

    Wang S, Wei C, Yin Z Q, He D Y, Cong H, Hao P L, Guan-Jie F Y, Wang C, Zhang L J, Jie K, Liu S F, Zhou Z, Wang Y G, Guo G C, Han Z F 2018 Opt. Lett. 43 2030Google Scholar

    [7]

    Zhu L, Zhu G X, Wang A D, Wang L L, Ai J Z, Chen S, Du C, Liu J, Yu S Y, Wang J 2018 Opt. Lett. 43 1890Google Scholar

    [8]

    Boucher W, Debuisschert T 2006 Phys. Rev. A 72 1

    [9]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptol. 5 3Google Scholar

    [10]

    Heffner B L 1992 IEEE Photon. Tech. L. 4 1066Google Scholar

    [11]

    Xavier G B, Walenta N, Vilela de Faria G, Temporão G P, Gisin N, Zbinden H, von der Weid J P 2009 New J. Phys. 11 045015Google Scholar

    [12]

    Ding Y Y, Hua C, Wang S, He D Y, Yin Z Q, Wei C, Zhou Z, Guo G C, Han Z F 2017 Opt. Express 25 27923Google Scholar

    [13]

    Chen J, Wu G, Li Y, Wu E, Zeng H P 2007 Opt. Express 15 17928Google Scholar

    [14]

    Chen J, Wu G, Xu L, Gu X, Zeng H P 2009 New J. Phys. 11 065004Google Scholar

    [15]

    Agnesi C, Avesani M, Calderaro L, Stanco A, Foletto G, Zahidy M, Scriminich A, Vedovato F, Vallone G, Villoresi P 2020 Optica 7 284Google Scholar

    [16]

    Xavier G B, Vilela de Faria G, Temporão G P, & von der Weid J P 2008 Opt. Express 16 1867Google Scholar

    [17]

    Li D D, Gao S, Li G C, Lu X, Wang L W, Lu C B, Yao X, Zhao Z Y, Yan L C, Chen Z Y 2018 Opt. Express 26 22793Google Scholar

    [18]

    Ding Y Y, Chen W, Chen H, Wang C, Li Y P, Yin Z Q, Wang S, Guo G C, Han Z F 2017 Opt. Lett. 42 1023Google Scholar

    [19]

    Shi Y C, Thar S M, Poh H S, Grieve J A, Kurtsiefer C, Ling A 2020 Appl. Phys. Lett. 117 4002

    [20]

    Shi Y C, Poh H S, Ling A, Kurtsiefer C 2021 Opt. Express 29 37075Google Scholar

    [21]

    廖延彪 2003 偏振光学 (北京: 科学出版社) 第45页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p45 (in Chinese)

    [22]

    张启业, 朱勇, 苏洋, 周 华, 经继松 2013 光学学报 33 23

    Zhang Q Y, Zhu Y, Su Y, Zhou H, Jing J S 2013 Acta Opt. Sin. 33 23

    [23]

    王剑, 朱勇, 周华, 苏洋, 张志永 2015 光学学报 35 76

    Wang J, Zhu Y, Zhou H, Su Y, Zhang Z Y 2015 Acta Opt. Sin. 35 76

    [24]

    Yan Y, Geng C, Li F, Huang G, Li X Y 2017 IEEE Photon. Technol. Lett. 29 945Google Scholar

    [25]

    周华, 蒲涛, 苏洋, 徐智勇, 沈荟萍, 赵继勇, 王艺敏, 吴传信 2017 2017量子信息技术与应用研讨会论文集 中国北京 2017年6月15—16日 第68页

    Zhou H, Pu T, Su Y, Xu Z Y, Shen H P, Zhao J Y, Wang Y M, Wu C X 2017 2017 Quantum Information Technology and Application Symposium proceedings Beijing China June 15–16, 2017 p68 (in Chinese)

    [26]

    Xi L X, Zhang X G, Tang X F, Weng X A, Tian F 2010 Chin. Opt. Lett. 8 804Google Scholar

  • [1] 何希文, 马德岳, 张政, 王荣平, 刘继桥, 陈卫标, 周治平. 基于分段级联多模干涉的Ta2O5 980/1550 nm波分复用/解复用器. 物理学报, 2025, 74(2): 024202. doi: 10.7498/aps.74.20241243
    [2] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发. 物理学报, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [3] 桑迪, 徐明峰, 安强, 付云起. 基于拓扑优化的自由形状波分复用超光栅. 物理学报, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [4] 沈琦琦, 张毅, 王金东, 於亚飞, 魏正军, 张智明. 量子密钥分发系统中抗扰动偏振编码模式的实验研究. 物理学报, 2021, 70(18): 180302. doi: 10.7498/aps.70.20210749
    [5] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [6] 应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文. 200 km沙漠链路高精度光纤时频传递关键技术研究. 物理学报, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [7] 陈艳辉, 王金东, 杜聪, 马瑞丽, 赵家钰, 秦晓娟, 魏正军, 张智明. 光纤偏振编码量子密钥分发系统荧光边信道攻击与防御. 物理学报, 2019, 68(13): 130301. doi: 10.7498/aps.68.20190464
    [8] 叶涛, 徐旭明. 高效异质结构四波长波分复用器的设计与优化. 物理学报, 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [9] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响. 物理学报, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [10] 张建忠, 王安帮, 王云才. 混沌光通信与OC-48光纤通信的波分复用. 物理学报, 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [11] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [12] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [13] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [14] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [15] 李齐良, 孙丽丽, 陈均朗, 李庆山, 唐向宏, 钱 胜, 林理彬. 周期色散管理波分复用系统中交叉相位调制边带不稳定性理论分析. 物理学报, 2007, 56(2): 805-810. doi: 10.7498/aps.56.805
    [16] 郑力明, 王发强, 刘颂豪. 光纤色散与损耗对光量子密钥分发系统的影响. 物理学报, 2007, 56(4): 2180-2183. doi: 10.7498/aps.56.2180
    [17] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [18] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统. 物理学报, 2005, 54(11): 5014-5017. doi: 10.7498/aps.54.5014
    [19] 秦小芸, 黄弼勤, 陈海星, 杨立功, 顾培夫. 多周期双啁啾镜结构的空间解波分复用器. 物理学报, 2004, 53(11): 3794-3799. doi: 10.7498/aps.53.3794
    [20] 梁创, 符东浩, 梁冰, 廖静, 吴令安, 姚德成, 吕述望. 850nm光纤中1.1km量子密钥分发实验. 物理学报, 2001, 50(8): 1429-1433. doi: 10.7498/aps.50.1429
计量
  • 文章访问数:  4197
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 修回日期:  2022-02-21
  • 上网日期:  2022-06-24
  • 刊出日期:  2022-07-05

/

返回文章
返回