-
光纤信道由于受环境影响产生的随机双折射等物理效应使得在其中传输的光信号具有敏感的偏振变化, 严重影响了偏振编码量子密钥分发系统的性能. 本文提出了一种利用单光子计数作为反馈信号的低噪声光纤信道波分复用实时偏振补偿系统, 该系统通过探测共轭参考光的光子计数得到光纤信道偏振变化信息, 设计补偿算法控制电动偏振控制器实时校准对应偏振基下量子信号光的偏振态, 成功实现了稳定的光纤信道偏振补偿. 为验证补偿系统的有效性, 进行了传输距离为25.2 km的基于BB84协议的量子密钥分发测试, 在实验室环境和模拟城域网地埋光纤环境下得到了长达8 h的稳定测试结果, 平均量子比特误码率分别为0.52%和1.25%. 该实验结果表明本系统可在城域网地埋光纤环境下保障偏振编码量子密钥分发的稳定工作.The physical effects such as random birefringence of fiber optic channels due to environmental influences make the optical signals transmitted in them have sensitive polarization variations, which seriously affects the performance of polarization biased code quantum key distribution systems. In this paper, a low-noise fiber channel wavelength division multiplexing real-time polarization compensation system is presented, where single photon counting is used as a feedback signal. The system can acquire the fiber channel polarization change information by detecting the photon counting of the conjugate reference light. In the system, the compensation algorithm is designed to control the electric polarization controller to calibrate the polarization state of the quantum signal light under the corresponding polarization base in real time, and the stable fiber channel polarization compensation is successfully achieved. In order to verify the effectiveness of the compensation system, a quantum key distribution test based on BB84 protocol with a transmission distance of 25.2 km is conducted, and stable test results of up to 8 hours are obtained in the laboratory environment and the simulated metropolitan area network buried fiber environment, with the average quantum bit error rate being 0.52% and 1.25%, respectively. The experimental results show that this system can guarantee the stable operation of polarization-encoded quantum key distribution in the buried fiber environment in urban areas.
-
Keywords:
- quantum key distribution /
- polarization compensation /
- wavelength division multiplexing /
- buried fiber optic
[1] Gisin N, Ribordy G, Tittel W, Zbinden H 2001 Rev. mod. phys. 74 145
[2] Scarani V, Bechmann P H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar
[3] Bennett C H, Brassard G 1984 IEEE International Conference on Computers New York 198 4
[4] Wang J D, Qin X J, Jiang Y Z, Wang X J, Chen L W, Zhao F, Wei Z J, Zhang Z M 2016 Opt. Express 24 8302Google Scholar
[5] Liu X B, Liao C J, Mi J L, Wang J D, Liu S H 2008 Phys. Lett. A. 373 54Google Scholar
[6] Wang S, Wei C, Yin Z Q, He D Y, Cong H, Hao P L, Guan-Jie F Y, Wang C, Zhang L J, Jie K, Liu S F, Zhou Z, Wang Y G, Guo G C, Han Z F 2018 Opt. Lett. 43 2030Google Scholar
[7] Zhu L, Zhu G X, Wang A D, Wang L L, Ai J Z, Chen S, Du C, Liu J, Yu S Y, Wang J 2018 Opt. Lett. 43 1890Google Scholar
[8] Boucher W, Debuisschert T 2006 Phys. Rev. A 72 1
[9] Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptol. 5 3Google Scholar
[10] Heffner B L 1992 IEEE Photon. Tech. L. 4 1066Google Scholar
[11] Xavier G B, Walenta N, Vilela de Faria G, Temporão G P, Gisin N, Zbinden H, von der Weid J P 2009 New J. Phys. 11 045015Google Scholar
[12] Ding Y Y, Hua C, Wang S, He D Y, Yin Z Q, Wei C, Zhou Z, Guo G C, Han Z F 2017 Opt. Express 25 27923Google Scholar
[13] Chen J, Wu G, Li Y, Wu E, Zeng H P 2007 Opt. Express 15 17928Google Scholar
[14] Chen J, Wu G, Xu L, Gu X, Zeng H P 2009 New J. Phys. 11 065004Google Scholar
[15] Agnesi C, Avesani M, Calderaro L, Stanco A, Foletto G, Zahidy M, Scriminich A, Vedovato F, Vallone G, Villoresi P 2020 Optica 7 284Google Scholar
[16] Xavier G B, Vilela de Faria G, Temporão G P, & von der Weid J P 2008 Opt. Express 16 1867Google Scholar
[17] Li D D, Gao S, Li G C, Lu X, Wang L W, Lu C B, Yao X, Zhao Z Y, Yan L C, Chen Z Y 2018 Opt. Express 26 22793Google Scholar
[18] Ding Y Y, Chen W, Chen H, Wang C, Li Y P, Yin Z Q, Wang S, Guo G C, Han Z F 2017 Opt. Lett. 42 1023Google Scholar
[19] Shi Y C, Thar S M, Poh H S, Grieve J A, Kurtsiefer C, Ling A 2020 Appl. Phys. Lett. 117 4002
[20] Shi Y C, Poh H S, Ling A, Kurtsiefer C 2021 Opt. Express 29 37075Google Scholar
[21] 廖延彪 2003 偏振光学 (北京: 科学出版社) 第45页
Liao Y B 2003 Polarization Optics (Beijing: Science Press) p45 (in Chinese)
[22] 张启业, 朱勇, 苏洋, 周 华, 经继松 2013 光学学报 33 23
Zhang Q Y, Zhu Y, Su Y, Zhou H, Jing J S 2013 Acta Opt. Sin. 33 23
[23] 王剑, 朱勇, 周华, 苏洋, 张志永 2015 光学学报 35 76
Wang J, Zhu Y, Zhou H, Su Y, Zhang Z Y 2015 Acta Opt. Sin. 35 76
[24] Yan Y, Geng C, Li F, Huang G, Li X Y 2017 IEEE Photon. Technol. Lett. 29 945Google Scholar
[25] 周华, 蒲涛, 苏洋, 徐智勇, 沈荟萍, 赵继勇, 王艺敏, 吴传信 2017 2017量子信息技术与应用研讨会论文集 中国北京 2017年6月15—16日 第68页
Zhou H, Pu T, Su Y, Xu Z Y, Shen H P, Zhao J Y, Wang Y M, Wu C X 2017 2017 Quantum Information Technology and Application Symposium proceedings Beijing China June 15–16, 2017 p68 (in Chinese)
[26] Xi L X, Zhang X G, Tang X F, Weng X A, Tian F 2010 Chin. Opt. Lett. 8 804Google Scholar
-
图 4 偏振补偿模块未启动时量子信号光
$ \left| H \right\rangle $ 偏振变化引起QBER变化情况 (a) 测试90 min无扰偏器时QBER变化情况; (b) 测试10 min有扰偏器时QBER变化情况Fig. 4. QBER variation of quantum signal caused by polarization drift without compensation: (a) QBER variation in 90 minutes without scrambler; (b) QBER variation in 10 minutes with scrambler.
图 5 运行补偿程序时量子信号光的4种偏振态QBER的变化 (a) 量子信号光
$ \left| H \right\rangle $ QBER的变化; (b) 量子信号光$ \left| V \right\rangle $ QBER的变化; (c) 量子信号光$ \left| + \right\rangle $ QBER的变化; (d) 量子信号光$ \left| - \right\rangle $ QBER的变化Fig. 5. QBER variation of quantum signal in four polarization states when running the compensation program: (a) QBER variation of quantum signal in
$ \left| H \right\rangle $ ; (b) QBER variation of quantum signal in$ \left| V \right\rangle $ ; (c) QBER variation of quantum signal in$ \left| + \right\rangle $ ; (d) QBER variation of quantum signal in$ \left| - \right\rangle $ .图 6 启动扰偏器后运行补偿程序时量子信号光的4种偏振态QBER变化 (a) 量子信号光
$ \left| H \right\rangle $ QBER的变化; (b) 量子信号光$ \left| V \right\rangle $ QBER的变化; (c) 量子信号光$ \left| + \right\rangle $ QBER的变化; (d) 量子信号光$ \left| - \right\rangle $ QBER的变化Fig. 6. QBER variation of the quantum signal in four polarization states after starting the scrambler and running the compensation program: (a) QBER variation of quantum signal in
$ \left| H \right\rangle $ ; (b) QBER variation of quantum signal in$ \left| V \right\rangle $ ; (c) QBER variation of quantum signal in$ \left| + \right\rangle $ ; (d) QBER variation of quantum signal in$ \left| - \right\rangle $ . -
[1] Gisin N, Ribordy G, Tittel W, Zbinden H 2001 Rev. mod. phys. 74 145
[2] Scarani V, Bechmann P H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar
[3] Bennett C H, Brassard G 1984 IEEE International Conference on Computers New York 198 4
[4] Wang J D, Qin X J, Jiang Y Z, Wang X J, Chen L W, Zhao F, Wei Z J, Zhang Z M 2016 Opt. Express 24 8302Google Scholar
[5] Liu X B, Liao C J, Mi J L, Wang J D, Liu S H 2008 Phys. Lett. A. 373 54Google Scholar
[6] Wang S, Wei C, Yin Z Q, He D Y, Cong H, Hao P L, Guan-Jie F Y, Wang C, Zhang L J, Jie K, Liu S F, Zhou Z, Wang Y G, Guo G C, Han Z F 2018 Opt. Lett. 43 2030Google Scholar
[7] Zhu L, Zhu G X, Wang A D, Wang L L, Ai J Z, Chen S, Du C, Liu J, Yu S Y, Wang J 2018 Opt. Lett. 43 1890Google Scholar
[8] Boucher W, Debuisschert T 2006 Phys. Rev. A 72 1
[9] Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptol. 5 3Google Scholar
[10] Heffner B L 1992 IEEE Photon. Tech. L. 4 1066Google Scholar
[11] Xavier G B, Walenta N, Vilela de Faria G, Temporão G P, Gisin N, Zbinden H, von der Weid J P 2009 New J. Phys. 11 045015Google Scholar
[12] Ding Y Y, Hua C, Wang S, He D Y, Yin Z Q, Wei C, Zhou Z, Guo G C, Han Z F 2017 Opt. Express 25 27923Google Scholar
[13] Chen J, Wu G, Li Y, Wu E, Zeng H P 2007 Opt. Express 15 17928Google Scholar
[14] Chen J, Wu G, Xu L, Gu X, Zeng H P 2009 New J. Phys. 11 065004Google Scholar
[15] Agnesi C, Avesani M, Calderaro L, Stanco A, Foletto G, Zahidy M, Scriminich A, Vedovato F, Vallone G, Villoresi P 2020 Optica 7 284Google Scholar
[16] Xavier G B, Vilela de Faria G, Temporão G P, & von der Weid J P 2008 Opt. Express 16 1867Google Scholar
[17] Li D D, Gao S, Li G C, Lu X, Wang L W, Lu C B, Yao X, Zhao Z Y, Yan L C, Chen Z Y 2018 Opt. Express 26 22793Google Scholar
[18] Ding Y Y, Chen W, Chen H, Wang C, Li Y P, Yin Z Q, Wang S, Guo G C, Han Z F 2017 Opt. Lett. 42 1023Google Scholar
[19] Shi Y C, Thar S M, Poh H S, Grieve J A, Kurtsiefer C, Ling A 2020 Appl. Phys. Lett. 117 4002
[20] Shi Y C, Poh H S, Ling A, Kurtsiefer C 2021 Opt. Express 29 37075Google Scholar
[21] 廖延彪 2003 偏振光学 (北京: 科学出版社) 第45页
Liao Y B 2003 Polarization Optics (Beijing: Science Press) p45 (in Chinese)
[22] 张启业, 朱勇, 苏洋, 周 华, 经继松 2013 光学学报 33 23
Zhang Q Y, Zhu Y, Su Y, Zhou H, Jing J S 2013 Acta Opt. Sin. 33 23
[23] 王剑, 朱勇, 周华, 苏洋, 张志永 2015 光学学报 35 76
Wang J, Zhu Y, Zhou H, Su Y, Zhang Z Y 2015 Acta Opt. Sin. 35 76
[24] Yan Y, Geng C, Li F, Huang G, Li X Y 2017 IEEE Photon. Technol. Lett. 29 945Google Scholar
[25] 周华, 蒲涛, 苏洋, 徐智勇, 沈荟萍, 赵继勇, 王艺敏, 吴传信 2017 2017量子信息技术与应用研讨会论文集 中国北京 2017年6月15—16日 第68页
Zhou H, Pu T, Su Y, Xu Z Y, Shen H P, Zhao J Y, Wang Y M, Wu C X 2017 2017 Quantum Information Technology and Application Symposium proceedings Beijing China June 15–16, 2017 p68 (in Chinese)
[26] Xi L X, Zhang X G, Tang X F, Weng X A, Tian F 2010 Chin. Opt. Lett. 8 804Google Scholar
计量
- 文章访问数: 4197
- PDF下载量: 72
- 被引次数: 0