-
分布式光纤温度传感(distributed temperature sensor, DTS)系统进行温度测量时, 参考光斯托克斯光强度随着温度的升高而增大, 使信号光反斯托克斯光与参考光斯托克斯光强度的比值减小, 测量温度小于真实温度, 降低系统的测温准确度. 本文提出并实验验证了一种新的动态校准法修正斯托克斯光信号, 可有效减小斯托克斯光导致的测温误差, 提高系统的测温准确度. 该方法根据参考光纤中的实时斯托克斯光强分布, 模拟出对应的整条光纤在参考温度环境中的斯托克斯光强度曲线, 实现斯托克斯光的温度响应修正. 实验结果表明, 与传统温度解调方法相比, 分布式光纤温度传感系统进行斯托克斯光动态校准后测温准确度最高提升4.3 ℃. 与瑞利噪声抑制法联用后, 测温准确度提高8.9 ℃. 本研究为DTS系统进行高温环境温度监测提供了一种新的解决方案.In a distributed fiber optic temperature sensing system, the intensity of Raman Stokes backscattering light serving as reference light increases with the increase of temperature, leading to measurement errors in the system. A novel method of dynamically calibrating Raman Stokes backscattering light intensity is proposed to improve temperature accuracy for distributed fiber optic temperature sensors. According to the real-time Stokes intensity distribution in the reference fiber, Stokes intensity curve of the whole fiber at a reference temperature is simulated, and the temperature response of Stokes light is corrected. The ratio of Raman anti-Stokes light intensity to the calculated Stokes light intensity is used to demodulate temperature along the fiber. The experimental results indicate that the temperature accuracy of the distributed optical fiber temperature sensor system after making the Stokes optical dynamic calibration is increased up to 4.3 ℃ compared with that from the conventional method. And the accuracy of temperature measurement is improved by 8.9 ℃ when combined with Rayleigh noise suppression method. This study provides a new solution for a distributed fiber optic temperature sensor system to monitor high temperature environment temperature.
-
Keywords:
- distributed fiber optic temperature sensor /
- Raman Stokes backscattering light /
- calibration /
- temperature accuracy
[1] Ren L, Jiang T, Jia Z G, Li D S, Yuan C L, Li H N 2018 Measurement 122 57Google Scholar
[2] Francesca D D, Girard S, Planes I, et al. 2017 IEEE Trans. Nucl. Sci. 64 54Google Scholar
[3] Liu Y P, Yin J Y, Fan X Z, Wang B W 2019 Appl. Opt. 58 7962Google Scholar
[4] Yan B Q, Li J, Zhang M J, Zhang J Z, Qiao L J, Wang T 2019 Sensors 19 2320Google Scholar
[5] Yilmaz G, Karlik S E 2006 Sensor Actuat A-Phys. 125 148Google Scholar
[6] 饶云江 2017 物理学报 66 074207Google Scholar
Rao Y J 2017 Acta Phys. Sin. 66 074207Google Scholar
[7] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏 2017 物理学报 66 070705Google Scholar
Liu T G, Yu Z, Jiang J F, Liu K, Zhang X Z, Ding Z Y, Wang S, Hu H F, Han Q, Zhang H X, Li H Z 2017 Acta Phys. Sin. 66 070705Google Scholar
[8] 张明江, 李健, 刘毅, 张建忠, 李云亭, 黄琦, 刘瑞霞, 杨帅军 2017 中国激光 44 0306002Google Scholar
Zhang M J, Li J, Liu Y, Zhang J Z, Li Y T, Huang Q, Liu R X, Yang S J 2017 Chin. Laser 44 0306002Google Scholar
[9] Wang W J, Chang J, Lv G P, Wang Z L, Liu Z, Luo S, Jiang S, Liu X Z, Liu X H, Liu Y N 2013 Photonic Sens. 3 256Google Scholar
[10] 杨睿, 李小彦, 高翔 2015 光子学报 44 1006006Google Scholar
Yang R, Li X Y, Gao X 2015 Acta Photon. Sin. 44 1006006Google Scholar
[11] Sun B N, Chang J, Lian J, Wang Z L, Lv G P, Liu X Z, Wang W J, Zhou S, Wei W, Jiang S, Liu Y N, Luo S, Lu X H, Liu Z, Zhang S S 2013 Opt. Commun. 306 117Google Scholar
[12] Yan B Q, Li J, Zhang M J, Xu Y, Yu T, Zhang J Z, Qiao L J, Wang T 2020 Appl. Opt. 59 22Google Scholar
[13] Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Wei W, Liu X H, Lv G P 2015 Optik 126 270Google Scholar
[14] Wang Z L, Chang J, Zhang S S, Sun B N, Jiang S, Luo S, Jia C W, Liu Y N, Liu X H, Lv G P, Liu X Z 2014 Opt. Quant. Electron. 46 821Google Scholar
[15] Li J, Li Y T, Zhang M J, Liu Y, Zhang J J, Yan B Q, Wang D, Jin B Q 2017 Photonic Sens. 8 103Google Scholar
[16] 李云亭, 张明江, 刘毅, 张建忠 2017 光电工程 34 20Google Scholar
Li Y T, Zhang M J, Liu Y, Zhang J Z 2017 Optoelectron. Eng. 34 20Google Scholar
[17] 汤玉泉, 孙苗, 李俊, 杨爽, Brian Culshaw, 董凤忠 2015 光子学报 44 112Google Scholar
Tang Y Q, Sun M, Li J, Yang S, Brian C, Dong F Z 2015 Acta Photon. Sin. 44 112Google Scholar
[18] Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Liu X H, Lv G P 2015 IEEE Sens. J. 15 1061Google Scholar
[19] Suh K, Lee C 2008 Opt. Lett. 33 1845Google Scholar
[20] Wang Z L, Zhang S S, Chang J, Lv G P, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Sun B N, Liu Y N 2013 Opt. Quant. Electron. 45 1087Google Scholar
[21] 孙苗, 汤玉泉, 杨爽, 李俊, Brian Culshaw, 董凤忠 2015 光电子·激光 26 2070Google Scholar
Sun M, Tang Y Q, Yang S, Li J, Brain C, Dong F Z 2015 J. Optoelectron. Laser 26 2070Google Scholar
[22] Wang Z, Sun X H, Xue Q, Wang Y L, Qi Y L, Wang X S 2017 Opt. Laser Technol. 93 224Google Scholar
[23] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬 2020 物理学报 69 030701Google Scholar
Ma T B, Zi B W, Guo Y C, Ling L Y, Huang Y R, Jia X F 2020 Acta Phys. Sin. 69 030701Google Scholar
[24] Chakraborty A L, Sharma R K, Saxena M K, Kher S 2007 Opt. Commun. 274 396Google Scholar
-
图 5 DTS系统的测温结果 (a) 斯托克斯光动态校准前后消除瑞利噪声的测量温度; (b)斯托克斯光校准前后消除瑞利噪声的测温误差
Fig. 5. Temperature measurement results in DTS system: (a) Measurement temperature results without Rayleigh noise before and after Stokes light dynamic calibration; (b) temperature error without Rayleigh noise before and after Stokes light dynamic calibration.
-
[1] Ren L, Jiang T, Jia Z G, Li D S, Yuan C L, Li H N 2018 Measurement 122 57Google Scholar
[2] Francesca D D, Girard S, Planes I, et al. 2017 IEEE Trans. Nucl. Sci. 64 54Google Scholar
[3] Liu Y P, Yin J Y, Fan X Z, Wang B W 2019 Appl. Opt. 58 7962Google Scholar
[4] Yan B Q, Li J, Zhang M J, Zhang J Z, Qiao L J, Wang T 2019 Sensors 19 2320Google Scholar
[5] Yilmaz G, Karlik S E 2006 Sensor Actuat A-Phys. 125 148Google Scholar
[6] 饶云江 2017 物理学报 66 074207Google Scholar
Rao Y J 2017 Acta Phys. Sin. 66 074207Google Scholar
[7] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏 2017 物理学报 66 070705Google Scholar
Liu T G, Yu Z, Jiang J F, Liu K, Zhang X Z, Ding Z Y, Wang S, Hu H F, Han Q, Zhang H X, Li H Z 2017 Acta Phys. Sin. 66 070705Google Scholar
[8] 张明江, 李健, 刘毅, 张建忠, 李云亭, 黄琦, 刘瑞霞, 杨帅军 2017 中国激光 44 0306002Google Scholar
Zhang M J, Li J, Liu Y, Zhang J Z, Li Y T, Huang Q, Liu R X, Yang S J 2017 Chin. Laser 44 0306002Google Scholar
[9] Wang W J, Chang J, Lv G P, Wang Z L, Liu Z, Luo S, Jiang S, Liu X Z, Liu X H, Liu Y N 2013 Photonic Sens. 3 256Google Scholar
[10] 杨睿, 李小彦, 高翔 2015 光子学报 44 1006006Google Scholar
Yang R, Li X Y, Gao X 2015 Acta Photon. Sin. 44 1006006Google Scholar
[11] Sun B N, Chang J, Lian J, Wang Z L, Lv G P, Liu X Z, Wang W J, Zhou S, Wei W, Jiang S, Liu Y N, Luo S, Lu X H, Liu Z, Zhang S S 2013 Opt. Commun. 306 117Google Scholar
[12] Yan B Q, Li J, Zhang M J, Xu Y, Yu T, Zhang J Z, Qiao L J, Wang T 2020 Appl. Opt. 59 22Google Scholar
[13] Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Wei W, Liu X H, Lv G P 2015 Optik 126 270Google Scholar
[14] Wang Z L, Chang J, Zhang S S, Sun B N, Jiang S, Luo S, Jia C W, Liu Y N, Liu X H, Lv G P, Liu X Z 2014 Opt. Quant. Electron. 46 821Google Scholar
[15] Li J, Li Y T, Zhang M J, Liu Y, Zhang J J, Yan B Q, Wang D, Jin B Q 2017 Photonic Sens. 8 103Google Scholar
[16] 李云亭, 张明江, 刘毅, 张建忠 2017 光电工程 34 20Google Scholar
Li Y T, Zhang M J, Liu Y, Zhang J Z 2017 Optoelectron. Eng. 34 20Google Scholar
[17] 汤玉泉, 孙苗, 李俊, 杨爽, Brian Culshaw, 董凤忠 2015 光子学报 44 112Google Scholar
Tang Y Q, Sun M, Li J, Yang S, Brian C, Dong F Z 2015 Acta Photon. Sin. 44 112Google Scholar
[18] Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Liu X H, Lv G P 2015 IEEE Sens. J. 15 1061Google Scholar
[19] Suh K, Lee C 2008 Opt. Lett. 33 1845Google Scholar
[20] Wang Z L, Zhang S S, Chang J, Lv G P, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Sun B N, Liu Y N 2013 Opt. Quant. Electron. 45 1087Google Scholar
[21] 孙苗, 汤玉泉, 杨爽, 李俊, Brian Culshaw, 董凤忠 2015 光电子·激光 26 2070Google Scholar
Sun M, Tang Y Q, Yang S, Li J, Brain C, Dong F Z 2015 J. Optoelectron. Laser 26 2070Google Scholar
[22] Wang Z, Sun X H, Xue Q, Wang Y L, Qi Y L, Wang X S 2017 Opt. Laser Technol. 93 224Google Scholar
[23] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬 2020 物理学报 69 030701Google Scholar
Ma T B, Zi B W, Guo Y C, Ling L Y, Huang Y R, Jia X F 2020 Acta Phys. Sin. 69 030701Google Scholar
[24] Chakraborty A L, Sharma R K, Saxena M K, Kher S 2007 Opt. Commun. 274 396Google Scholar
计量
- 文章访问数: 6131
- PDF下载量: 175
- 被引次数: 0